Koordinationschemie funktioneller Phosphine: Carbonyl- und Carbonyl(nitrosyl)wolfram-Derivate von 2-Diphenylphosphinoanilin und 2-Diphenylphosphinobenzoesäure *

Jörg Pietsch **, Alexander Wolski, Lutz Dahlenburg und Matthias Moll

Institut für Anorganische Chemie der Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, D-91058 Erlangen (Deutschland)

Heinz Berke, Dario Veghini und Igor Leonidovich Eremenko

Anorganisch-chemisches Institut der Universität Zürich, Winterthurer Str. 190, CH-8057 Zürich (Schweiz)

(Eingegangen den 20. Oktober 1993)

Abstract

Replacement of CO by monodentate phosphines PR₃ in [W(CO)₅Cl]⁻, followed by treatment with Ph₂PC₆H₄X-2 of the resulting anions [W(CO)₄(PR₃)Cl]⁻, afforded the mixed phosphine complexes [W(CO)₄(PR₃)Ch₂PC₆H₄X-2)] (PR₃ = PMe₃, PBu₃, PPh₂Me and PPh₃) **1a-1d** (X = NH₂) and **2a-2d** (X = CO₂H), respectively. [W(CO)₄(Ph₂PC₆H₄NH₂-2)Cl]⁻ (3), prone to further transformation into [W(CO)₄(η^2 -Ph₂PC₆H₄NH₂-2)] (4) after loss of Cl⁻, resulted from initial interaction of [W(CO)₅Cl]⁻ with Ph₂PC₆H₄NH₂-2. Except for minor quantities of [W(CO)₃(NO)(PPh₂Me)(Ph₂PC₆H₄CO₂H-2)][BF₄] (5), no well-defined nitrosyl products were accessible from reactions of tetracarbonyls **1** and **2** with NO⁺ salts. Such derivatives, *viz.*, [W(CO)₃(NO)(PR₃) (Ph₂PC₆H₄NH₂-2)][PF₆] (6), by rapidly ejecting CO under formation of the more stable [W(CO)₂(NO)(PR₃)(η^2 -Ph₂PC₆H₄NH₂-2)][PF₆] (6), by rapidly ejecting CO under formation of the more stable [W(CO)₂(NO)(PR₃)(η^2 -Ph₂PC₆H₄NH₂-2)][PF₆] (PR₃ = PMe₃: **7a**; PPh₂Me: **7b**), [W(CO)₂(NO)(η^1 -Ph₂PC₆H₄NH₂-2)(η^2 -Ph₂PC₆H₄NH₂-2)][A] (A = SbF₆: **8**-SbF₆; BF₄: **8**-BF₄) and [W(CO)(NO)(η^2 -Ph₂PC₆H₄NH₂-2)][BF₄] (9), could be synthesized *via* displacement reactions of loosely-coordinated ligands (FPF₅⁻ and MeCN) by Ph₂PC₆H₄NH₂-2)][BF₄] (9), could be synthesized *via* displacement reactions of loosely-coordinated ligands (FPF₅⁻ and MeCN) by Ph₂PC₆H₄NH₂-2)]₂[Cl₂] ("4 · [NEt₄][W(CO)₄(PPh₂Me)Cl₁, [W(CO)₄(PPh₂Me)(Ph₂PC₆H₄NH₂-2)][PF₆] (**7a**), [W (CO)₂(NO)(η^1 -Ph₂PC₆H₄NH₂-2)]₂[Cl₂] ("4 · [NEt₄]Cl"), [W(CO)₄(PPh₂Me)Cl₁, [W(CO)₄(PPh₂Me)(Ph₂PC₆H₄NH₂-2)][PF₆] (**7a**), [W (CO)₂(NO)(η^1 -Ph₂PC₆H₄NH₂-2)][PF₆] (**7a**), [W (CO)₂(NO)(η^2 -Ph₂PC₆H₄NH₂-2)][BF₄] (**9**, containing 1H₂O of crystallization) have been determined by single-crysta

Zusammenfassung

Durch Austausch von CO gegen einzähnige Phosphine PR₃ in $[W(CO)_5C]^-$ und nachfolgende Umsetzung der so erhaltenen Anionen $[W(CO)_4(PR_3)C]^-$ mit Ph₂PC₆H₄X-2 wurden die gemischt substituierten Komplexe $[W(CO)_4(PR_3)(Ph_2PC_6H_4X-2)]$ mit PR₃ = PMe₃, PBu₃, PPh₂Me und PPh₃, **1a-1d** (X = NH₂) bzw. **2a-2d** (X = CO₂H), erhalten. Aus $[W(CO)_5C]^-$ und Ph₂PC₆H₄NH₂-2 entstand das wenig stabile $[W(CO)_4(Ph_2PC_6H_4NH_2-2)C]^-$ (3), welches unter Abspaltung von Chlorid zu $[W(CO)_4(\eta^2-Ph_2PC_6H_4NH_2-2)]$ (4) weiterreagierte. Mit Ausnahme des in geringen Mengen isolierten Komplexes $[W(CO)_3(NO)(PPh_2Me)(Ph_2PC_6H_4CO_2H-2)][BF_4]$ (5) ließen sich keine definierten Nitrosyl-Produkte aus 1 oder 2 und NO⁺ -salzen darstellen. Solche Derivate, nämlich $[W(CO)_3(NO)(PR_3)(Ph_2PC_6H_4NH_2-2)][PF_6]$ (6), welches unter rascher CO-Eliminierung in $[W(CO)_2(NO)(PR_3)(\eta^2-Ph_2PC_6H_4NH_2-2)][PF_6]$ (PR₃ = PMe₃: **7a**; PPh₂Me: **7b**) überging, $[W(CO)_2(NO)(\eta^1-Ph_2PC_6H_4NH_2-2)](BF_4)]$ (9), wurden aber über die Substitution schwach gebundener Liganden (FPF₅⁻ und MeCN) durch Ph₂PC₆H₄NH₂-2 in vorgebildeten Nitrosyl-Spezies wie z.B. $[W(CO)_3(NO)(PR_3)(FPF_5)]$ oder $[W(CO)_2(NO)(MeCN)_3]^+$ erhalten. Folgende Verbindungen wurden durch Röntgenstrukturanalyse charakterisiert: $[NEt_4][W(CO)_4(PPh_2Me)Cl]$, $[W(CO)_4(PPh_2Me)(Ph_2PC_6H_4NH_2-2)]$ (1c),

Correspondence to: Prof. Dr. L. Dahlenburg or Prof. Dr. H. Berke.

^{*} Herrn Professor Dr. H. Werner zum 60. Geburtstag gewidmet.

^{**} Die Ergebnisse wurden den Arbeiten zur Dissertation von J. Pietsch entnommen.

 $[NEt_4]_2[[W(CO)_4(\eta^2 - Ph_2PC_6H_4NH_2-2)]_2Cl_2] \quad ("4 \cdot [NEt_4]Cl"), \quad [W(CO)_2(NO)(PMe_3)(\eta^2 - Ph_2PC_6H_4NH_2-2)][PF_6] \quad (7a).$ $[W(CO)_2(NO)(\eta^1-Ph_2PC_6H_4NH_2-2)(\eta^2-Ph_2PC_6H_4NH_2-2)][SbF_6] (8-SbF_6, als Additions verbindung mit 0.5Et_2O und 0.5CH_2Cl_2),$ und $[W(CO)(NO)(\eta^2 - Ph_2PC_6H_4NH_2 - 2)_2][BF_4]$ (9, als Monohydrat).

Key words: Phosphine; Tungsten; Carbonyl; Nitrosyl; X-ray diffraction

1. Einleitung

Die Reduktion der Carbonylfunktion durch Übertragung von H⁻ aus einer hydridischen Quelle und Addition von H⁺ aus einer protischen Ouelle gehört zu den meistgenutzten Methoden der organischen Synthese. Zudem spielt die Übertragung von H⁻ und H⁺ als H₂-Aquivalent in biologischen Prozessen eine wesentliche Rolle. Für ionische Hydrierungen eignen sich neben den traditionellen Hydridderivaten von Hauptgruppenelementen auch Hydridokomplexe von Übergangsmetallen in Kombination mit Säuren unterschiedlicher Stärke [1-6]. Hierselbst wurde von der Züricher Arbeitsgruppe in mehreren Arbeiten dokumentiert, daß sich insbesondere auch phosphin- und phosphit-modifizierte Carbonyl(nitrosyl)wolframhydride $[WH(CO)_2(NO)L_2]$ in Gegenwart schwacher Säuren zur Reduktion von Aldehyden und Ketonen gut eignen [7.8]. Weiterhin gibt es Hinweise darauf, daß Hydrierungen von Estern und Ketonen mit Diwasserstoff-Komplexen [9,10] über ein sich rasch einstellendes Gleichgewicht " $L_n M(\eta^2 - H_2) \rightleftharpoons L_n MH^- + H^+$ " gleichfalls nach ionischen Mechanismen ablaufen [6]. Dies legt den Gedanken nahe, neben der Metallhydrid-Funktion auch die Protonenguelle in der Koordinationssphäre von Hydridoübergangsmetallkomplexen zu verankern. Vor diesem Hintergrund suchen wir seit kurzem nach geeigneten Syntheseverfahren für entsprechende Carbonyl(nitrosyl)-Verbindungen des Wolframs und berichten nachstehend über eine Reihe verschiedenartiger Derjvate der Liganden 2-Diphenylphosphinoanilin, Ph₂PC₆H₄NH₂-2, und 2-Diphenylphosphinobenzoesäure, Ph2PC6H4CO2H-2, die im Verlauf dieser Arbeiten erhalten wurden.

2. Synthesen und Eigenschaften

Die Darstellung gemischt substituierter Tetracarbonylbis(phosphin)-Komplexe [W(CO)₄(PR₃)(Ph₂P- C_6H_4X-2] mit PR₃ = PMe₃, PBu₃, PPh₂Me und PPh₃, $1a-1d (X = NH_2)$ und $2a-2d (X = CO_2H)$, gelingt ausgehend von [W(CO)₆] über das Pentacarbonylchlorowolframat-Ion [W(CO)₅Cl]⁻ [11] durch sukzessive Einführung der Phosphinliganden (Schema 1). Hierbei ist es notwendig, zunächst eine der Carbonylgruppen durch das nichtfunktionelle tertiäre Phosphin PR₃ zu substituieren und im Folgeschritt den Chloroliganden

der so erhaltenen komplexen Anionen $[W(CO)_4(PR_3)$ -Cl]⁻ [12] in Gegenwart von Na[BF₄] [13] gegen Ph₂P- $C_6H_4NH_2$ -2 bzw. $Ph_2PC_6H_4CO_2H$ -2 auszutauschen. Die Einführung der funktionellen Phosphine Ph₂P- C_6H_4X-2 bereits im ersten Schritt führt zu wenig stabilen Wolframat-Anionen, z.B. [W(CO)₄(Ph₂PC₆H₄- $NH_2-2)Cl$ ⁻ (3), welche in Lösung unter Abspaltung von Chlorid alsbald in Chelatkomplexe wie etwa [W- $(CO)_4(\eta^2-Ph_2PC_6H_4NH_2-2)$] (4) übergehen. Nebenprodukte der nach Sequenz 1 erhaltenen Verbindungen 1 und 2 sind die monosubstituierten Pentacarbonyl-Derivate $[W(CO)_{5}(PR_{3})]$, die sich durch Chromatographie an Kieselgel entfernen lassen.

Als Feststoffe sind die hellgelben Komplexe 1 und 2 längere Zeit an Luft stabil. Sie sind mäßig (1) bis gut (2) löslich in Solventien wie Methylenchlorid, Chloroform, Methanol, Ethanol und THF. Die Derivate 2 lösen sich außerdem besonders gut in Ether. Aceton und Acetonitril. Unpolare Kohlenwasserstoffe lösen die Verbindungen nicht.

Versuche, die nach (1) erhaltenen Tetracarbonyl-Komplexe über die Tricarbonylnitrosyl-Kationen [W- $(CO)_3(NO)(PR_3)(Ph_2PC_6H_4X-2)]^+$ in die angestrebten Dicarbonylnitrosylhydride [WH(CO)₂(NO)(PR₃)- $(Ph_2PC_6H_4X-2)$] umzuwandeln [14,15], verliefen wenig befriedigend: Die Nitrosylierung von 1 und 2 mit $NO[BF_4]$ oder $NO[PF_6]$ in CH_2Cl_2 führte in der Regel zu grün bis braun gefärbten Oxidations- bzw. Zersetzungsprodukten. Lediglich im Falle von 2c wurden

durch Umsetzung mit NO[BF₄] geringe Mengen des erwünschten Komplexes [W(CO)₃(NO)(PPh₂Me)(Ph₂-PC₆H₄CO₂H-2)][BF₄] (5) erhalten, die sich präparativ allerdings nicht weiterverwerten ließen.

Zur Vermeidung dieser unkontrollierten Reaktionen wurde daher in weiteren Arbeiten der NO-Ligand vor Einführung der NH- bzw. OH-funktionellen Phosphine in die Koordinationssphäre des Wolframs eingefügt. Hierzu wurden die Pentacarbonyl-Verbindungen $[W(CO)_5(PR_3)]$ (PR₃ = PMe₃, PPh₂Me) mit NO[PF₆] in CH₂Cl₂ bei Raumtemperatur zu den Tricarbonylnitrosyl-Komplexen [W(CO)₃(NO)(PR₃)-(FPF₅)] umgesetzt, die sich aus den äußerst labilen Tetracarbonylnitrosyl-Salzen $[W(CO)_4(NO)(PR_3)][PF_6]$ durch CO- Verlust spontan in Lösung bilden [16]. Durch in situ Substitution des nur locker gebundenen Hexafluorophosphato-Liganden gegen Ph₂PC₆H₄-NH₂-2 (Schema 2) erhielt man mit Ausbeuten von ca. 30% die Dicarbonyl-Derivate $[W(CO)_2(NO)(PR_3)(\eta^2 Ph_2PC_6H_4NH_2-2)$ [PF₆] mit $PR_3 = PMe_3$ (7a) und PPh_2Me (7b). Die ³¹P-NMR-spektroskopische Verfolgung der zu 7b führenden Reaktion zeigt, daß hierbei eine Tricarbonyl-Zwischenstufe mit einzähnig gebundenem Ph₂PC₆H₄NH₂-2-Liganden, [W(CO)₃(NO)- $(PPh_2Me)(Ph_2PC_6H_4NH_2-2)]^+$ (6b), durchlaufen wird (vgl. Tab. 2).

Ausgehend von einem kürzlich beschriebenen [17] kationischen Mononitrosyl-Komplex mit labilen Acetonitril-Liganden, $[W(CO)_2(NO)(MeCN)_3]^+$, ließ sich in Gegenwart von Hexafluoroantimonat als Anion durch Umsetzung mit überschüssigem Ph₂PC₆H₄-NH₂-2 auch ein ausschließlich von 2-Diphenylphosphinoanilin substituiertes Analogon der Verbindungen 7, $[W(CO)_2(NO)(\eta^1-Ph_2PC_6H_4NH_2-2)(\eta^2-Ph_2PC_6H_4-$ NH₂-2)][SbF₆] (8-SbF₆), erhalten. Ein entsprechendes Tetrafluoroborat-Salz, $[W(CO)_2(NO)(\eta^1-Ph_2PC_6H_4-$ NH₂-2)][SbF₆] (8-SbF₆), erhalten. Ein entsprechendes Tetrafluoroborat-Salz, $[W(CO)_2(NO)(\eta^1-Ph_2PC_6H_4-$ NH₂-2)(η^2 -Ph_2PC₆H_4NH_2-2)][BF₄] (8-BF₄), entstand aus $[W(CO)_2(NO)(MeCN)_3]$ [BF₄] und zwei Äquivalenten des Phosphinliganden in CH₂Cl₂ bei Raumtemperatur. Im Gegensatz zu 8-SbF₆ erwies sich 8-BF₄ in

Schema 3.

Lösung als nicht unbegrenzt stabil, sondern ging innerhalb von zwei Tagen vollständig in das Bis(chelat)-Folgeprodukt $[W(CO)(NO)(\eta^2-Ph_2PC_6H_4NH_2-2)_2] [BF_4]$ (9) über (Schema 3).

3. Spektroskopische Charakterisierung

Die IR- und ³¹P-NMR-Daten der Komplexe 1–9 sind in den Tabellen 1 und 2 zusammengestellt. Ausgewählte ¹H- und ¹³C-NMR-Daten finden sich im Experimentellen Teil bei den jeweiligen Verbindungen.

Anzahl und relative Intensitäten der für die Verbindungsreihen **1a-1d** und **2a-2d** beobachteten ν (CO)-Absorptionen sowie deren ³¹P-NMR-Parameter lassen erkennen, daß diese Tetracarbonyl-Derivate als *cis*- und *trans*-Isomere auftreten. Ähnlich wie bei anderen disubstituierten Wolframcarbonylen *cis/trans*-[W(CO)₄(PR₃)(PR'₃)] [18] weisen die jeweiligen *trans*-Verbindungen beträchtlich größere Kopplungskonstanten ¹J(WP) auf als die zugehörigen *cis*-Komplexe. Die

Schema 2.

indirekten Kopplungskonstanten $cis^{-2}J(PP)$, ca. 20-25 Hz, und $trans^{-2}J(PP)$, ca. 50-60 Hz, bewegen sich an den unteren Enden der dafür diagnostischen Bereiche von 20-50 Hz bzw. 50-200 Hz [18]. Aus den Intensitätsverhältnissen der an Lösungen der Isomerengemische gemessenen AB-³¹P-NMR-Spektren können für die verschiedenen Ligandenkombinationen PR₃/Ph₂PC₆H₄X-2 qualitativ folgende Trends in den cis/trans-Verhältnissen abgelesen werden: ausschließlich cis (2a), $cis \gg trans$ (1a, 1c, 1d), $cis \approx trans$ (2b-2d), $cis \ll trans$ (1b).

Die Chelatfunktion des 2-Diphenylphosphinoanilin-Liganden in den η^2 -Ph₂PC₆H₄NH₂-2 Derivaten **4** und 7-**9** äußert sich ³¹P-NMR-spektroskopisch in der dafür erwarteten hochfrequenten Verschiebung des in den fünfgliedrigen Ring eingebundenen Phosphor-Kerns. Im Falle des Kations **8**, [W(CO)₂(NO)(η^1 -Ph₂PC₆H₄-NH₂-2)(η^2 -Ph₂PC₆H₄NH₂-2)]⁺, beträgt dieser Ringbeitrag zur Koordinationsverschiebung [19] *ca.* +13 ppm. Die *cis*-PP-Kopplung in **9** fällt mit nur 9.7 Hz bemerkenswert klein aus.

4. Röntgenstrukturanalysen

Folgende Komplexe wurden strukturanalytisch charakterisiert: $[NEt_4][W(CO)_4(PPh_2Me)Cl], [W(CO)_4$ -

TABELLE 1. IR-Daten (cm⁻¹) von 1-9^a

Nr.	ν(CO)	ν(NO)
la ^{c,f}	2010 s, 1910 s, 1880 vs, 1860 vs, 1835 s	,
1b ^{d,f}	2011 s, 1933 s, 1873 vvs, 1849 sh	
1c ^{c,f}	2013 vs, 1913 vs, 1887 vs, 1854 vs	
1d ^{c,f}	2009 s, 1903 sh, 1885 vvs	
2a ^{b,f}	2010 s, 1910 vs, 1890 vs, 1850 vs	
2b ^{e,f}	2000 s, 1930 sh, 1900 sh, 1870 vs	
2c ^{c,f}	2005 s, 1935 sh, 1910 sh, 1870 vs	
2d ^{c,f}	2018 m, 1939 vs, 1879 vvs, 1831 vs	
3 ^b	2004 s, 1875 vvs (br), 1819 vs	
4 ^b	2006 s, 1888 vs, 1871 vs, 1821 vs	
mer,cis-5 ^f	2022 vs, 1943 vs	1635 vs
cis,cis-7a ^f	2028 vs, 1956 vs	1653 vs
cis,cis- 7b ^f	2031 vs, 1931 vs	1657 vs
cis,cis-8-SbF ₆ f	2033 vs, 1942 vs	1663 vs
cis,cis-8-BF ₄ ^f	2031 vs, 1936 vs	1653 vs
cis,cis -9 ^f	1923 vs	1605 vs

^a In KBR. ^b cis-Isomer. ^c cis / trans-Gemisch mit überwiegendem cis-Anteil. ^d cis / trans-Gemisch mit überwiegendem trans-Anteil. ^e cis / trans-Gemisch mit vergleichbaren cis und trans-Anteilen. ^f Weitere charakterische Banden (cm⁻¹): 1a; 3460 m, 3380 m (NH₂). 1b; 3450 m, 3370 m (NH₂). 1c; 3480 m, 3400 m (NH₂). 1d; 3454 m, 3406 m (NH₂). 2a; 1690 m (CO₂H). 2b; 1695 m (CO₂H). 2c; 1685 s (CO₂H). 2d; 1703 m (CO₂H). 5; 1088 s, br (BF₄). 7a; 3278 m, 3248 m (NH₂), 842 vs (PF₆). 7b; 3262 w, br (NH₂), 838 vs (PF₆). 8-SbF₆; 3443 m, br (NH₂ frei), 3236 m, br (NH₂ koord.), 666 vs (SbF₆). 8-BF₄; 3444 m, br (NH₂ frei), 3227 m, br (NH₂ koord.), 1084 vs (BF₄). 9; 3229 m, br (NH₂), 1087 vs (BF₄).

Nr.	$\delta(P_A)$	$\delta(P_B)$	$^{2}J(\mathbf{P}_{A}\mathbf{P}_{B})$
cis-1a	16.8 (233.2)	- 38.4 (222.6)	24.8
trans-1a	21.5 (285.2)	- 32.2 (261.1)	47.4
cis-1b	14.6 (229.7)	- 10.3 (225.2)	23.0
trans-1b	20.6 (282.7)	-2.7 (265.4)	49.6
cis-1c	16.7 (229.5)	- 3.7 (230.1)	24.2
trans-1c	20.9 (282.7)	2.5 (275.1)	53.6
cis-1d	21.5 (228.3)	15.5 (229.4)	25.0
trans-1d	26.6 (284.1)	19.7 (278.2)	55.4
cis- 2a	27.7 (237.0)	- 40.5 (226.4)	25.4
cis- 2b	25.8 (231.6)	- 12.1 (222.8)	24.3
trans-2b	34.4 (289.5)	-2.8 (263.3)	54.4
cis-2c	27.9 (237.0)	-4.9 (232.7)	23.1
trans-2c	34.1 (300.8)	1.9 (278.1)	59.2
cis-2d	29.0 (233.2)	21.2 (232.4)	27.3
trans-d	33.1 (287.1)	27.2 (nicht aufgelöst)	61.1
3	35.7 (242.0)		
4	38.3 (242.1)		
cis-5	12.5 (249.5)	1.9 (265.9)	22.3
cis-6a	3.6 (176.0)	- 32.8 (247.9)	25.1
cis- 6b	19.0 (177.4)	-0.8 (254.4)	24.0
cis-7a	30.1 (263.5)	- 31.5 (257.0)	21.2
cis-7 b	27.3 (266.0)	- 1.4 (256.7)	22.1
cis-8-SbF ₆	28.3 (260.8)	15.8 (260.7)	22.4
cis- 8-B F ₄	28.3 (259.0)	15.7 (257.4)	22.4
cis-9	43.2 (374.5)	38.9 (247.7)	9.7

TABELLE 2. ³¹P-{¹H}-NMR-Daten von 1-9 ^a

^a In CDCl₃ (1a, 3, 5-9), Aceton- d_6 (1b, 2a-2c), C_6D_6 (1d, 2d), THF- d_8 (1c) bzw. Ethanol- d_6 (4); $P_A = \eta^1$ -Ph₂PC₆H₄NH₂-2 (1a-1d, 3, 6a, 6b), η^2 -Ph₂PC₆H₄NH₂-2 (4, 7a-9) bzw. η^1 -Ph₂PC₆H₄CO₂H-2 (2a-c, 5); $P_B = PMe_3$ (1a, 2a, 6a, 7a), PBu₃ (1b, 2b), PPh₂Me (1c, 2c, 5, 6b, 7b), PPh₃ (1d, 2d), η^1 -Ph₂PC₆H₄NH₂-2 (8) bzw. η^2 -Ph₂PC₆H₄NH₂-2 (9); Kopplungskonstanten in Hz (¹J(¹⁸³WP) in Klammern hinter den jeweiligen chemischen Verschiebungen); PF₆-Signal von 6a bis 7b bei $\delta = -144$ (¹J(PF) \approx 710 Hz).

 $\begin{array}{l} (\text{PPh}_{2}\text{Me})(\text{Ph}_{2}\text{PC}_{6}\text{H}_{4}\text{NH}_{2}\text{-}2)] \ \textbf{(1c)}, \ [W(\text{CO})_{4}(\eta^{2}\text{-}\text{Ph}_{2}\text{P-}\\ \text{C}_{6}\text{H}_{4}\text{NH}_{2}\text{-}2)] \ \textbf{(4)}, \ [W(\text{CO})_{2}(\text{NO})(\text{PMe}_{3})(\eta^{2}\text{-}\text{Ph}_{2}\text{P-}\\ \text{C}_{6}\text{H}_{4}\text{NH}_{2}\text{-}2)][\text{PF}_{6}]\textbf{-(7a)}, \ [W(\text{CO})_{2}(\text{NO})(\eta^{1}\text{-}\text{Ph}_{2}\text{PC}_{6}\text{H}_{4}\text{-}\\ \text{NH}_{2}\text{-}2)(\eta^{2}\text{-}\text{Ph}_{2}\text{PC}_{6}\text{H}_{4}\text{NH}_{2}\text{-}2)][\text{SbF}_{6}] \ \textbf{(8-SbF}_{6}) \ \textbf{und} \ [W-\\ (\text{CO})(\text{NO})(\eta^{2}\text{-}\text{Ph}_{2}\text{PC}_{6}\text{H}_{4}\text{NH}_{2}\text{-}2)_{2}][\text{BF}_{4}] \ \textbf{(9)}. \end{array}$

Das Strukturmodell des Chlorowolframat-Anions $[W(CO)_4(PPh_2Me)Cl]^-$ ist in Abb. 1 dargestellt. Der Komplex weist eine verzerrt *cis*-oktaedrische Koordinationsgeometrie mit praktisch identischen W-CO-Abständen auf.

Abb. 2 zeigt das Molekül des gleichfalls *cis*oktaedrischen Komplexes $[W(CO)_4(PPh_2Me)(Ph_2P-C_6H_4NH_2-2)]$ (1c). Der Abstand zwischen dem zentralen Wolframatom und dem Diphenylmethylphosphin-Liganden, 2.530(3) Å, ist nahezu identisch mit dem für $[W(CO)_4(PPh_2Me)Cl]^-$ gemessenen Wert von 2.537(5) Å. Demgegenüber ist die W-P-Bindung zwischen dem Zentralatom und dem schwächeren σ -Donator Ph_2PC_6H_4NH_2-2 mit einer Länge von 2.573(3) Å deutlich aufgeweitet. Der NH_2-Substituent ist zur Peripherie des Moleküls hin orientiert, so daß keinerlei Wechselwirkungen mit dem Zentralmetall oder den Sauerstoffatomen der Carbonylgruppen existieren.

Der Chelatkomplex [W(CO)₄(η^2 -Ph₂PC₆H₄NH₂-2)] (4) kristallisierte aus CH₂Cl₂-Lösungen von [W(CO)₄-(Ph₂PC₆H₄NH₂-2)Cl⁻] als Molekülverbindung mit einem Mol Tetraethylammoniumchlorid, "[W(CO)₄-(η^2 -Ph₂PC₆H₄NH₂-2)] · [NEt₄]Cl". Die Strukturanalyse ergab, daß je zwei Chlorid-Ionen zwei Komplexteilchen über N-H··· Cl-Wasserstoffbrücken zu zentrosymmetrischen zweikernigen dianionischen Einheiten des Typs {[W(CO)₄(η^2 -Ph₂PC₆H₄NH₂-2)]₂-Cl₂}²⁻ verknüpfen (Abb. 3). Durch die Bildung des fünfgliedrigen Ringsystems wird die Bindung zwischen dem Metallatom und dem Ph₂PC₆H₄NH₂-2-Liganden im Vergleich zu 1c erwartungsgemäß verkürzt: 2.490(3) Å vs. 2.573(3) Å.

Abbildungen 4 und 5 stellen die Strukturmodelle der Kationen der miteinander eng verwandten Komplexe [W(CO)₂(NO)(PMe₃)(η^2 -Ph₂PC₆H₄NH₂-2)]-[PF₆] (7a) und [W(CO)₂(NO)(η^1 -Ph₂PC₆H₄NH₂-2)-(η^2 -Ph₂PC₆H₄NH₂-2)][SbF₆] (8-SbF₆) dar. Die letztgenannte Verbindung kristallisierte aus CH₂Cl₂/Ether-Mischungen mit jeweils 0.5 Mol der Lösemittel-

Abb. 1. Perspektivische Darstellung von $[W(CO)_4(PPh_2Me)Cl]^$ ohne Berücksichtigung der H-Atome. Ausgewählte Bindungslängen (Å) und -winkel (°): W(1)–P(1), 2.537(5); W(1)–Cl(1), 2.584(6); W(1)– C(1), 2.006(16); W(1)–C(2), 2.006(14); W(1)–C(3), 2.006(16); W(1)– C(4), 2.007(16); C(1)–O(1), 1.10(2); C(2)–O(2), 1.10(2); C(3)–O(3), 1.10(2); C(4)–O(4), 1.11(2). P(1)–W(1)–Cl(1), 81.1(2); P(1)–W(1)– C(1), 84.8(6); P(1)–W(1)–C(2), 98.8(4); P(1)–W(1)–C(3), 170.1(6); P(1)–W(1)–C(4), 94.9(7); Cl(1)–W(1)–C(1), 97.9(6); Cl(1)–W(1)–C(2), 174.4(8); Cl(1)–W(1)–C(3), 90.9(6); Cl(1)–W(1)–C(4), 91.1(11); C(1)– W(1)–C(2), 87.9(10); C(1)–W(1)–C(3), 90.5(8); C(1)–W(1)–C(4), 171.0(15); C(2)–W(1)–C(3), 89.8(7); C(2)–W(1)–C(4), 83.3(14); C(3)– W(1)–C(4), 91.1(10); W(1)–C(1)–O(1), 175.2(19); W(1)–C(2)–O(2), 174.0(20); W(1)–C(3)–O(3), 176.3(18); W(1)–C(4)–O(4), 174.7(4).

Abb. 2. Molekülmodell von [W(CO)₄(PPh₂Me)(Ph₂PC₆H₄NH₂-2)] (1c). Ausgewählte Bindungslängen (Å) und -winkel (°); W(1)–P(1), 2.573(3); W(1)–P(2), 2.530(3); W(1)–C(1), 2.021(12); W(1)–C(2), 1.992(13); W(1)–C(3), 2.012(11); W(1)–C(4), 1.987(12);C(1)–O(1), 1.147(13); C(2)–O(2), 1.141(13); C(3)–O(3), 1.151(12); C(4)–O(4), 1.144(12). P(1)–W(1)–P(2), 94.99(9); P(1)–W(1)–C(1), 93.2(3); P(1)–W(1)–C(2), 88.8(3); P(1)–W(1)–C(3), 91.2(3); P(1)–W(1)–C(4), 174.3(3); P(2)–W(1)–C(1), 90.7(3); P(2)–W(1)–C(2), 176.1(4); P(2)–W(1)–C(3), 90.4(3); P(2)–W(1)–C(4), 174.3(3); C(1)–W(1)–C(2), 90.0(5); C(1)–W(1)–C(3), 175.3(4); C(1)–W(1)–C(4), 88.5(4); C(2)–W(1)–C(3), 88.5(5); C(2)–W(1)–C(4), 85.8(5); C(3)–W(1)–C(4), 87.0(4); W(1)–C(1)–O(1), 178.5(10); W(1)–C(2)–O(2), 177.8(11); W(1)–C(3)–O(3), 174.4(11); W(1)–C(4)–O(4), 176.7(10).

komponenten. Die kristallchemischen Umgebungen der in Abb. 5 gezeigten symmetrieunabhängigen Kationen von 8-SbF₆ unterscheiden sich dadurch, daß das Kation 2 über die in den Chelatring eingebundene Amino-Funktion um N(4) mit dem (in der Abbildung nicht wiedergegebenen) Et2O-Molekül über eine Wasserstoffbrücke verbunden ist (Abstand $O \cdots N$, 2.846 Å). Während im Kation von 7a die W-P-Bindung innerhalb des Chelatringes mit 2.498(3) Å praktisch ebenso lang ist wie im Molekül 4 (s.o.), ist der entsprechende Abstand in 8 mit Werten von 2.525(2) Å für das Kation 1 bzw. 2.555(2) Å für das Kation 2 beträchtlich gedehnt. Demgegenüber sind die Längen der Bindungen zwischen dem Wolframatom und dem einzähnig koordinierten Ph₂PC₆H₄NH₂-2-Liganden in 1c (2.573(3) Å) und 8 (2.574(2) sowie 2.591(2) Å) kaum verschieden. Die Längen der W-N-Bindungen innerhalb der Chelatringsysteme von 4, 7a und 8 variieren zwischen 2.255(5) bzw. 2.265(5) (8), 2.294(9) (7a) und 2.305(10) (4) Å, ohne daß dabei ein eindeutig zu interpretierender Trend zu erkennen ist.

Anders als in der Neutralverbindung 1c (Abb. 2) ist die Aminogruppe des einzähnig gebundenen $Ph_2PC_6-H_4NH_2$ -2-Liganden im Kationkomplex 8 zum Zentralatom hin ausgerichtet (Abb. 5) – ein struktur-

chemisches Merkmal, welches der Beobachtung Rechnung trägt, daß Kationen wie 8 unter Verdrängung einer Carbonylgruppe durch ebendiese NH₂-Funktion leicht in Bis(chelat)-Folgeprodukte übergehen (vgl. Schema 3). Ein solches ließ sich in Form von [W(CO)- $(NO)(\eta^2-Ph_2PC_6H_4NH_2-2)_2[BF_4]$ (9) als kristallisiertes Monohydrat ebenfalls strukturell sichern. Die asymmetrische Einheit der zentrosymmetrischen triklinen Elementarzelle enthält zwei unabhängige Komplexe, deren chirale Kationen in Abb. 6 wiedergegeben sind. Diese sind über ihre [BF₄]⁻-Gegenionen zu zweikernigen Aggregaten aus Bausteinen gleicher Händigkeit verknüpft, wie in Abb. 7 dargestellt ist. Die Längen der W-P- und W-NH₂-Bindungen in Struktur 9 zeigen die erwartete ausgeprägte Abhängigkeit von der Natur des jeweiligen trans-Liganden: So sind die Wolfram-Phosphor-Bindungen in trans-Stellung zur koordinierten Aminogruppe mit 2.419(7) bzw. 2.417(6) Å sehr viel kürzer als mit CO als trans-Einfluß-Ligand (2.528(5) bzw. 2.532(6) Å). Ganz entsprechend dehnt der trans-ständige Nitrosylligand die Länge der W-NH₂-Bindung im Kation 1 von Struktur 9 auf 2.336(14), im Kation 2 auf 2.341(14) Å. In trans-Stellung zu den W-P-Bindungen der beiden Kationen messen die jeweiligen W-NH₂-Abstände dagegen nur 2.230(21) bzw. 2.262(16) Å. Eine ähnliche *trans*-bedingte Abhängigkeit von W-NH₂R-Abständen wird in Phenylimido-Komplexen angetroffen, in denen die W-N-Bindungslängen je nach Art des *trans*-Liganden um *ca.* 0.2 Å differieren [20].

5. Schlußfolgerung

Zwar sind gemischt substituierte Tetracarbonylwolfram-Komplexe wie 1 und 2 mit NH- und OHfunktionellen Phosphinen auf dem Wege (1) leicht zugänglich, doch läßt sich an diesen eine weiterführende Derivatisierung, z.B. durch Einführung von NO-, nicht oder nur unter hohen Substanzverlusten bewerkstelligen. Zur Darstellung von Carbonyl(nitrosyl)wolfram-Verbindungen des 2-Diphenylphosphinoanilins empfiehlt sich daher die Verwendung vorgefertigter NO-Komplexe mit substitutionslabilen Liganden wie FPF₅⁻ oder MeCN. In allen auf diesem Wege – vgl. (2) und (3) – erhaltenen Produkten zeigt der Ph₂PC₆H₄-NH₂-2-Ligand eine bemerkenswerte Tendenz, koordiniertes CO unter Ausbildung von W-N-Bindungen und Chelatstrukturen zu verdrängen.

Abb. 3. Darstellung der zweikernigen anionischen Einheit von $[NEt_4]_2[[W(CO)_4(\eta^2-Ph_2PC_6H_4NH_2-2)]_2Cl_2\}$ (" $[W(CO)_4(\eta^2-Ph_2PC_6H_4NH_2-2)]_2Cl_2\}$ (" $[W(CO)_4(\eta^2-Ph_2PC_6H_4NH_2-2)]_2Cl_2$ (" $[W(CO)_4(\eta^2-Ph_2PC_6H_4NH_2-2]_2Cl_2$ (" $[W(CO)_4(\eta^2-Ph_2PC_6H_4NH_2-2]_2Cl_2$ (" $[W(CO)_4(\eta^2-Ph_2PC_6H_4NH_2-2]]_2$ (" $[W(CO)_4(\eta^2-Ph_2PC_6H_4NH_2-2]_2$ (" $[W(CO)_4(\eta^2-Ph_2PC_6H_4NH_2-2]]_2$ (" $[W(CO)_4(\eta^2-Ph_2PC_6H_4NH_2-2]_2$ (" $[W(CO)_4(\eta^2-Ph_2PC_6H_4NH_2-2]]_2$ ("

Abb. 4. Struktur des Kations von $[W(CO)_2(NO)(PMe_3)(\eta^2 Ph_2PC_6H_4NH_2-2)]PF_6]$ (7a). Ausgewählte Bindungsabstände (Å) und -winkel (°): W(1)–P(1), 2.498(3); W(1)–P(2), 2.557(3); W(1)–N(1), 1.795(12); W(1)–(N2), 2.294(9); W(1)–C(1), 2.032(17); W(1)–C(2), 1.992(13); N(1)–O(3), 1.217(17); C(1)–O(1), 1.136(21); C(2)–O(2), 1.131(18); P(1)–W(1)–P(2), 92.5(1); P(1)–W(1)–N(1), 96.1(4); P(1)–W(1)–N(2), 77.4(3); P(1)–W(1)–C(1), 168.8(4); P(1)–W(1)–C(2), 90.4(4); P(2)–W(1)–N(1), 89.7(4); P(2)–W(1)–N(2), 89.7(2); P(2)–W(1)–C(1), 89.1(4); P(2)–W(1)–C(2), 177.0(4); N(1)–W(1)–N(2), 173.4(5); N(1)–W(1)–C(1), 95.0(6); N(1)–W(1)–C(2), 89.0(5); N(2)–W(1)–C(1), 91.5(5); N(2)–W(1)–C(2), 89.0(5); C(1)–W(1)–C(2), 88.3(6); W(1)–N(1)–O(3), 177.0(11); W(1)–C(1)–O(1), 176.8(14); W(1)–C(2)–O(2), 171.6(11).

6. Experimentelles

6.1. Arbeitstechnik und apparatives Instrumentarium

Alle Reaktionen wurden unter Stickstoffatmosphäre in getrockneten, N₂-gesättigten Lösemitteln durchgeführt. IR-Spektren: Perkin Elmer 580B, Perkin Elmer 983, Mattson PolarisTM und Bio-Rad FTS-45. NMR-Spektren: Jeol FT-JNM-GX 270 und Jeol FT-JNM-EX 270 (270 MHz bei ¹H, 67.7 MHz bei ¹³C, 109.4 MHz bei ³¹P), Varian Gemini 200 (200 MHz bei ¹H, 50.3 MHz bei ¹³C) sowie Varian Gemini 300 (121.5 MHz bei ³¹P); ¹H- und ¹³C-Verschiebungen relativ zu einem internen TMS-Standard; Referenzierung der ³¹P-Spektren gegen H₃PO₄ ext.; Verschiebungen zu tiefem Feld mit positivem Vorzeichen. Röntgenstrukturanalysen auf Vierkreisdiffraktometern der Fabrikate Philips PW 1100, Siemens R3m/V sowie Nicolet R3.

6.2. Ausgangsverbindungen

Die Synthesen von $Ph_2PC_6H_4NH_2-2$ und $Ph_2P-C_6H_4CO_2H-2$ erfolgten wie in [21,22] angegeben. Zur Darstellung der Wolframat-Komplexe *cis*-[NEt₄][W-(CO)₄(PR₃)Cl] mit PR₃ = PBu₃, PPh₂Me und PPh₃ wurde analog [11] und [12] verfahren. Die in der Literatur noch nicht beschriebene Verbindung cis-[NEt₄]-[W(CO)₄(PMe₃)Cl] wurde entsprechend erhalten: 4.08 g (11.6 mmol) [W(CO)₆] und 1.93 g (11.6 mmol) [NEt₄]Cl wurden in 50 ml Diethylenglykoldimethylether suspendiert und 2.5 h auf 120°C erhitzt. Nach Filtration der noch heißen Lösung und Zugabe von 1.44 ml (13.9 mmol) PMe₃ wurde noch 30 min im Vakuum auf 50°C erwärmt. Das gelbe Produkt wurde durch langsames Zutropfen von 50 ml Ether und 100 ml n-Pentan bei 0°C gefällt, mit 2×10 ml Ether gewaschen, ggf. aus THF/n-Pentan umkristallisiert und im Vakuum getrocknet. Ausb.: 5.04 g (81%). Gef.: C, 33.41; H, 5.22; N, 2.59. $C_{15}H_{29}CINO_4PW$ (537.67) ber.: C, 33.51; H, 5.44; N, 2.61%. IR (KBr): 1780, 1840, 1860, 1990 cm⁻¹ (C=O). ¹H-NMR (THF- d_8): $\delta = 1.33$ $(tt, {}^{3}J(HH) = 7.7, {}^{3}J(NH) = 1.1 Hz, NCH_{2}CH_{3}); 1.48$ (d, ${}^{2}J(PH) = 7.7$ Hz, PCH_{3}); 3.42 (qu, $NCH_{2}CH_{3}$). ¹³C{¹H}-NMR (THF- d_8): $\delta = 8.0$ (s, NCH₂CH₃); 18.2 $(d, {}^{1}J(CP) = 25.4 Hz, PCH_{3}); 53.2 (s, NCH_{2}CH_{3});$ 206.5 (d, $cis^{-2}J(PC) = 8.5$, ${}^{1}J(WC) = 126.9$ Hz, 2 CO); 209.8 (d, $cis^{-2}J(PC) = 4.3$, ${}^{1}J(WC) = 169.3$ Hz, 1 CO); 214.5 (d, trans- ${}^{2}J(PC) = 36.0$, ${}^{1}J(WC) = 160.8$ Hz, 1 CO). ³¹P{¹H}-NMR (THF- d_8): $\delta = -28.0$ (s, ¹J(WP) = 218.7 Hz).

6.3. Komplex-Synthesen

6.3.1. $[W(CO)_4(PMe_3)(Ph_2PC_6H_4NH_2-2)]$ (1a)

1.78 g (3.3 mmol) [NEt₄][W(CO)₄(PMe₃)Cl], 1.19 g (4.3 mmol) $Ph_2PC_6H_4NH_2-2$ und 0.57 g (5.2 mmol) $Na[BF_4]$ wurden als Suspension in 20 ml Ethanol 1.5 h bei 50°C gerührt. Der nach Abziehen des Lösemittels verbleibende Rückstand wurde in wenig Ether aufgenommen und über Filterflocken filtriert. Nach Extraktion mit 3×5 ml THF ließen-sich durch Eindampfen im Vakuum 0.32 g (15%) 1a als cis/trans-Isomerengemisch mit weit überwiegendem cis-Anteil isolieren. Gef.: C, 45.75; H, 3.58; N, 1.69. C₂₅H₂₅-NO₄P₂W (649.28) ber.: C, 46.25; H, 3.88; N, 2.16%. ¹H-NMR (Dioxan- d_8): $\delta = 0.95$ (d, ²J(PH) = 6.8 Hz, PCH_3 , trans-Isomer); 1.51 (d, ${}^2J(PH) = 7.2$ Hz, PCH_3 , cis-Isomer); 4.49 (br, NH₂). ¹³C{¹H}-NMR (Dioxan- d_8): $\delta = 20.6$ (d, ¹J(PC) = 27.1 Hz, PCH₃, *cis*-Isomer); 22.4 (d, ${}^{1}J(PC) = 29.0$ Hz, PCH₃, trans-Isomer); Carbonyl-C-Atome des *cis*-Isomers bei $\delta = 204.1$ ("t", *cis*-²*J*(PC) = 7.7 Hz, 2 CO); 205.9 (dd, $cis^{-2}J(PC) = 6.5$, trans- $^{2}J(PC) = 23.7$ Hz, 1 CO); 206.6 (dd, $cis^{-2}J(PC) = 5.9$, trans- ${}^{2}J(PC) = 21.4$ Hz, 1 CO); Carbonyl-C-Atome des trans-Isomers bei $\delta = 204.2$ ("t", cis-²J(PC) = 6.0 Hz).

6.3.2. $[W(CO)_4(PBu_3)(Ph_2PC_6H_4NH_2-2)]$ (1b)

Die Darstellung erfolgte analog zu **1a** aus 1.68 g (2.5 mmol) [NEt₄][W(CO)₄(PBu₃)Cl], 0.92 g (3.3 mmol)

Abb. 5. Strukturen der beiden symmetrieunabhängigen Kationen in der asymmetrischen Einheit von $[W(CO)_2(NO)(\eta^1-Ph_2PC_6H_4NH_2 2(\eta^2 - Ph_2PC_6H_4NH_2 - 2)$ [SbF₆] (8-SbF₆). Ausgewählte Bindungsabstände (Å) und -winkel (°): Kation 1; W(1)-P(1), 2.525(2); W(1)-P(2), 2.591(2); W(1)-N(1), 1.790(6); W(1)-N(2), 2.265(5); W(1)-C(1), 2.009(8); W(1)-C(2), 2.021(6); N(1)-O(3), 1.203(8); C(1)-O(1), 1.152(10); C(2)-O(2), 1.150(8); P(1)-W(1)-P(2), 100.3(1); P(1)-W(1)-N(1), 97.3(2); P(1)-W(1)-N(2), 77.7(2); P(1)-W(1)-C(1), 167.3(2); P(1)-W(1)-C(2), 85.1(2); P(2)-W(1)-N(1), 89.5(2); P(2)-W(1)-N(1), 89.5(2), 89.5(2); P(2)-W(1)-N(1), 89.5(2); P(2)-W(1)-N(1), 89.5(2); P(2)-W(1)-N(1), 89.5(2); P(2)-W(1), 89.5(2); P(2)-W(W(1)-N(2), 94.6(1); P(2)-W(1)-C(1), 87.3(2); P(2)-W(1)-C(2), 174.6(2); N(1)-W(1)-N(2), 174.1(2); N(1)-W(1)-C(1), 92.9(3); N(1)-W(1)-C(2), 89.9(3); N(2)-W(1)-C(1), 91.6(3); N(2)-W(1)-C(2), 86.5(2); C(1)-W(1)-C(2), 87.4(3); W(1)-N(1)-O(3), 175.4(5); W(1)-C(1)-O(1), 175.5(6); W(1)-C(2)-O(2), 175.2(7). Kation 2; W(2)-P(3), 2.555(2); W(2)-P(4), 2.574(2); W(2)-N(4), 2.255(5); W(2)-N(5), 1.798(5); W(2)-C(39), 1.998(6); W(2)-C(40), 2.034(7); N(5)-O(6), 1.206(7); C(39)-O(4), 1.156(8); C(40)-O(5), 1.136(8); P(3)-W(2)-P(4), 95.9(1); P(3)-W(2)-N(4), 76.6(1);P(3)-W(2)-N(5), 103.9(2); P(3)-W(2)-C(39), 164.8(2); P(3)-W(2)-C(40), 87.8(2); P(4)-W(2)-N(4), 92.3(1); P(4)-W(2)-N(5), 91.2(2); P(4)-W(2)-C(39), 90.3(2); P(4)-W(2)-C(40), 176.1(1); N(4)-W(2)-N(5), 176.3(2); N(4)-W(2)-C(39), 89.3(2); N(4)-W(2)-C(40), 89.8(2); N(5)-W(2)-C(39), 89.8(2); N(5)-W(2)-C(40), 86.6(2); C(39)-W(2)-C(40), 86.4(3); W(2)-N(5)-O(6), 177.1(5); W(2)-C(39)-O(4), 177.1(6); W(2)-C(40)-O(5), 170.5(5).

Ph₂PC₆H₄NH₂-2 und 0.43 g (3.9 mmol) Na[BF₄] in 20 ml Ethanol. Zur Reinigung des Rohproduktes wurde dieses in THF an neutralem Kieselgel (Aktivitätsstufe I) chromatographiert. Ausb.: 1.31 g (68%) *cis/trans*-Isomerengemisch mit stark überwiegendem *trans*-Anteil. Gef.: C, 52.94; H, 5.83; N, 1.54. C₃₄H₄₃NO₄P₂W (775.52) ber.: C, 52.66; H, 5.59; N, 1.81%. ¹H-NMR (CDCl₃): $\delta = 0.94$ (t, ³*J*(HH) = 6.9 Hz, 3 Butyl-CH₃), 1.46 (m, 6 Butyl-CH₂), 1.90 (m, 3 Butyl-CH₂), 3.85 (br, NH₂). ¹³C{¹H}-NMR (CDCl₃): Butyl-C-Atome der Isomeren bei $\delta = 13.8$ (s), 24.20 (d, *J*(PC) = 12.5 Hz), 24.25 (d, *J*(PC) = 11.7 Hz), 25.9 (s), 28.2 (d, *J*(PC) = 22.1 Hz) und 30.4 (d, *J*(PC) = 26.0 Hz); Carbonyl-C-Atome des *trans*-Isomers bei $\delta = 204.4$ ("t", *cis-²J*(PC) = 6.4 Hz).

6.3.3. $[W(CO)_4(PPh_2Me)(Ph_2PC_6H_4NH_2-2)]$ (1c)

Darstellung und Reinigung gemaß 1b ausgehend von 1.86 g (2.8 mmol) $[NEt_4][W(CO)_4(PPh_2Me)Cl]$, 1.03 g (3.7 mmol) $Ph_2PC_6H_4NH_2-2$ und 0.48 g (4.4 mmol) Na[BF₄] in 25 ml Ethanol: 1.62 g (75%) cis/trans-Isomerengemisch mit stark überwiegendem cis-Anteil. Gef.: C, 54.82; H, 3.88; N, 1.54. C₃₅H₂₉-NO₄P₂W (773.42) ber.: C, 54.35; H, 3.78; N, 1.81%. ¹H-NMR (CDCl₃): $\delta = 1.65$ (d, ²J(PH) = 6.4 Hz, PCH₃, cis-Isomer); 2.27 (d, ${}^{2}J(PH) = 7.0$ Hz, PCH₃, trans-Isomer); 3.71 (br, NH₂). ¹³C{¹H}-NMR (CDCl₃): $\delta = 19.1$ $(d, {}^{1}J(PC) = 25.4 Hz, PCH_{3}, cis-Isomer); 22.3 (d,$ $^{1}J(PC) = 27.4$ Hz, PCH₃, trans-Isomer); Carbonyl-C-Atome des *cis*-Isomers bei $\delta = 203.8$ ("t", *cis*-²*J*(PC) = 7.3 Hz, 2 CO), 205.8 (dd, $cis^{-2}J(PC) = 6.3$, trans- ${}^{2}J(PC) = 24.8$ Hz, 1 CO) und 206.1 (dd, $cis - {}^{2}J(PC) =$ 4.7, $trans^{-2}J(PC) = 23.7$ Hz, 1 CO); Carbonyl-C-Atome des trans-Isomers bei $\delta = 204.0$ ("t", cis-²J(PC) = 6.3 Hz).

6.3.4. $[W(CO)_4(PPh_3)(Ph_2PC_6H_4NH_2-2)]$ (1d)

Synthese und Aufarbeitung wie bei **1b** aus 2.53 g (3.5 mmol) [NEt₄][W(CO)₄(PPh₃)Cl], 1.28 g (4.6 mmol) Ph₂PC₆H₄NH₂-2 und 0.60 g (5.5 mmol) Na[BF₄] in 30 ml Ethanol: 1.37 g (46%) *cis/trans*-Isomerengemisch mit stark überwiegendem *cis*-Anteil. Gef.: C, 57.22; H, 4.08; N, 1.21. C₄₀H₃₁NO₄P₂W (835.48) ber.: C, 57.50; H, 3.74; N, 1.68%.

6.3.5. $cis_{i}[W(CO)_{4}(PMe_{3})(Ph_{2}PC_{6}H_{4}CO_{2}H-2)]$ (2a) 1.70 g (3.2 mmol) [NEt₄][W(CO)_{4}(PMe_{3})Cl], 1.29 g (4.2 mmol) Ph_{2}PC_{6}H_{4}CO_{2}H-2 und 0.56 g (5.1 mmol) Na[BF_{4}] wurden in 50 ml Ethanol 2 h bei 50°C gerührt. Der nach Abziehen des Lösemittels verbleibende Rückstand wurde mit 6 × 10 ml Ether extrahiert. Die filtrierten Extrakte wurden im Vakuum zur Trockne eingedampft; das erhaltene Rohprodukt wurde durch Digerieren, zunächst mit n-Pentan (100 ml), dann mit möglichst wenig Ether (2 × 3 ml), gereinigt. Ausb.: 0.61

Abb. 6. Strukturen der beiden symmetrieunabhängigen Kationen in der asymmetrischen Einheit von $[W(CO)(NO)(\eta^2 - Ph_2PC_6H_4NH_2)]$ 2), [BF4] (9). Ausgewählte Bindungsabstände (Å) und -winkel (°): Kation 1; W(1)-P(1), 2.419(7); W(1)-P(2), 2.528(5); W(1)-N(1), 1.800(19); W(1)-N(11), 2.336(14); W(1)-N(12), 2.230(21); W(1)-C(1), 1.968(19); N(1)-O(2), 1.208(25); C(1)-O(1), 1.152(24). P(1)-W(1)-P(2), 102.6(2); P(1)-W(1)-N(1), 93.4(8); P(1)-W(1)-N(11), 79.0(4); P(1)-W(1)-N(12), 165.1(4); P(1)-W(1)-C(1), 86.9(6); P(2)-W(1)-C(1)N(1), 93.4(6); P(2)-W(1)-N(11), 87.8(4); P(2)-W(1)-N(12), 75.1(5); P(2)-W(1)-C(1), 169.7(6); N(1)-W(1)-N(11), 172.3(9); N(1)-W(1)-N(12), 101.4(9); N(1)-W(1)-C(1), 90.2(8); N(11)-W(1)-N(12), 86.2(6);N(11)-W(1)-C(1), 89.9(6); N(12)-W(1)-C(1), 94.7(8); W(1)-N(1)-C(1)O(2), 177.5(18); W(1)-C(1)-O(1), 173.9(16). Kation 2; W(2)-P(3), 2.532(6); W(2)-P(4), 2.417(6); W(2)-N(2), 1.805(15); W(2)-N(21), 2.262(16); W(2)-N(22), 2.341(14); W(2)-C(2), 1.963(24); N(2)-O(4), 1.208(21); C(2)-O(3), 1.20(3). P(3)-W(2)-P(4), 101.3(2); P(3)-W(2)-N(2), 93.8(6); P(3)-W(2)-N(21), 75.6(5); P(3)-W(2)-N(22), 86.2(5); P(3)-W(2)-C(2), 165.0(6); P(4)-W(2)-N(2), 93.6(5); P(4)-W(2)-N(21), 165.4(4); P(4)–W(2)–N(22), 79.7(4); P(4)–W(2)–C(2), 91.9(6); N(2)-W(2)-N(21), 100.8(7);N(2)-W(2)-N(22), 173.2(6); N(2)-W(2)-C(2), 92.2(8); N(21)-W(2)-N(22), 85.8(5); N(21)-W(2)-C(2), 89.9(7); N(22)-W(2)-C(2), 89.5(7); W(2)-N(2)-O(4), 172.1(16); W(2)-C(2)-O(3), 174.9(18).

g (28%). Gef.: C, 46.71; H, 3.49. $C_{26}H_{24}O_6P_2W$ (678.27) ber.: C, 46.04; H, 3.57%. ¹H-NMR (Aceton- d_6): $\delta =$ 1.38 (d, ²J(PH) = 7.7 Hz, PCH₃); 11.39 (br, CO₂H). ¹³C{¹H}-NMR (Aceton- d_6): $\delta = 20.9$ (d, ¹J(PC) = 26.4 Hz, PCH₃); 168.2 (s, CO₂H); 205.1 ("t", cis-²J(PC) = 7.6 Hz, 2CO); 207.9 (dd, cis-²J(PC) = 5.3, trans-²J(PC) = 25.7 Hz, 1CO); 208.6 (dd, cis-²J(PC) = 6.4, trans-²J(PC) = 22.2 Hz, 1 CO).

6.3.6. $[W(CO)_4(PBu_3)(Ph_2PC_6H_4CO_2H-2)]$ (2b)

Die Darstellung erfolgte, wie für 2a beschrieben, aus 1.42 g (2.1 mmol) [NEt₄][W(CO)₄(PBu₃)Cl], 0.86 g (2.8 mmol) $Ph_2PC_6H_4CO_2H-2$ und 0.36 g (3.3 mmol) Na[BF₄] in 20 ml Ethanol. Zur Reinigung des Rohproduktes wurde dieses in Ether an neutralem Kieselgel (Aktivitätsstufe I) chromatographiert: 1.17 g (71%) 2b als cis/trans-Isomerengemisch. Gef.: C, 51.92; H, 5.27. C₃₅H₄₂O₆P₂W (804.51) ber.: C, 52.25; H, 5.26%. ¹H-NMR (Aceton- d_6): $\delta = 0.83$ (t, ${}^{3}J(HH) = 7.2$ Hz, 3 Butyl-C H_3), 0.94–1.99 (m, 9 Butyl-C H_2); 11.27 (br, CO_2H). ¹³C{¹H}-NMR (CDCl₃): Butyl-C-Atome der Isomeren bei $\delta = 13.8$ (s), 24.2 (d, J(PC) = 12.7 Hz), 24.3 (d, J(PC) = 12.1 Hz), 25.8 (s), 26.0 (s), 28.3 (d, J(PC) = 21.8 Hz) und 30.7 (d, J(PC) = 25.7 Hz); 167.6 (s, CO₂H, cis-Isomer); 167.4 (s, CO₂H, trans-Isomer); Carbonyl-C-Atome des cis-Isomers bei $\delta = 204.5$ ("t", $cis^{-2}J(PC) = 7.6$ Hz, 2 CO), 206.3 (dd, $cis^{-2}J(PC) = 6.1$, $trans^{-2}J(PC) = 22.8$ Hz, 1 CO) und 207.0 (dd, cis- ${}^{2}J(PC) = 6.2$, trans- ${}^{2}J(PC) = 26.6$ Hz, 1 CO); Carbonyl-C-Atome des trans-Isomers bei $\delta = 204.3$ ("t", cis- ${}^{2}J(PC) = 6.2 \text{ Hz}, {}^{1}J(WC) = 126.9 \text{ Hz}.$

6.3.7. $[W(CO)_4(PPh_2Me)(Ph_2PC_6H_4CO_2H-2)]$ (2c)

Darstellung und Reinigung gemäß 2b ausgehend von 1.75 g (2.6 mmol) [NEt₄][W(CO)₄(PPh₂Me)Cl], 1.07 g (3.5 mmol) $Ph_2PC_6H_4CO_2H-2$ und 0.45 g (4.1 mmol) Na[BF₄] in 20 ml Ethanol. Ausbeute 1.51 g (73%) cis/trans-Isomerengemisch. Gef.: C, 53.76; H, 3.51. $C_{36}H_{28}O_6P_2W$ (802.41) ber.: C, 53.89; H, 3.52%. ¹H-NMR (Aceton- d_6): $\delta = 1.78$ (d, ²J(PH) = 6.4 Hz, PCH_3 , cis-Isomer); 2.39 (d, ²J(PH) = 6.8 Hz, PCH_3 , *trans*-Isomer); 11.22 (br, CO_2H). ¹³C{¹H}-NMR (Aceton- d_6): $\delta = 19.0$ (d, ${}^{1}J(PC) = 24.6$ Hz, PCH₃, cis-Isomer); 22.6 (d, ${}^{1}J(PC) = 30.8$ Hz, PCH₃, trans-Isomer); 167.2 (s, CO₂H, *cis*-Isomer); 167.8 (s, CO₂H, trans-Isomer); Carbonyl-C-Atome des cis-Isomers bei $\delta = 204.6$ ("t", cis-²J(PC) = 7.4 Hz, 2 CO), 206.7 und 207.1 (jeweils dd mit schlecht aufgelösten PC-Kopplungen); Carbonyl-C-Atome des *trans*-Isomers bei $\delta =$ 204.3 ("t", $cis^{-2}J(PC) = 6.2$ Hz).

6.3.8. $[W(CO)_4(PPh_3)(Ph_2PC_6H_4CO_2H-2)]$ (2d) Synthese und Aufarbeitung wie bei 2b aus 2.08 g (2.9 mmol) [NEt₄][W(CO)₄(PPh₃)Cl], 1.16 g (3.8 mmol) $Ph_2PC_6H_4CO_2H-2$ und 0.51 g (4.6 mmol) Na[BF₄] in 25 ml Ethanol; Identifizierung durch IR- und NMR-Spektroskopie.

6.3.9. $cis - [NEt_4] [W(CO)_4 (Ph_2PC_6H_4NH_2-2)Cl]$ (3)

Der Komplex wurde auf dem für cis- $[NEt_4][W-(CO)_4(PMe_3)Cl]$ beschriebenen Wege (s.o.) aus 3.73 g (10.6 mmol) $[W(CO)_6]$, 1.75 g (10.6 mmol) $[NEt_4]Cl$ und 3.55 g (12.8 mmol) Ph₂PC₆H₄NH₂-2 mit 69% Ausb. erhalten. Gef.: C, 48.44; H, 5.37; N, 3.40. C₃₀H₃₆ClN₂O₄PW (738.90) ber.: C, 48.77; H, 4.91; N, 3.79%.

6.3.10. $[W(CO)_4(\eta^2 - Ph_2PC_6H_4NH_2 - 2)]$ (4)

Der Chelat-Komplex kristallisierte bei Raumtemp. als Molekülverbindung mit 1 Mol [NEt₄]Cl in Form großer transparenter hellgelber Prismen aus Lösungen von 3 in CH₂Cl₂. Gef.: C, 49.33; H, 5.13; N, 3.49. $C_{30}H_{36}CIN_2O_4PW$ (738.90) ber.: C, 48.77; H, 4.91; N, 3.79%.

6.3.11. cis, cis- $[W(CO)_2(NO)(PMe_3)(\eta^2 - Ph_2PC_6H_4 - NH_2 - 2)][PF_6]$ (7a)

Zu einer Lösung von 0.24 g (1.1 mmol) $[W(CO)_5-(PMe_3)]$ [23] in 15 ml CH_2Cl_2 wurden 0.19 g (1.1 mmol) NO[PF₆] (Strem Chemicals) gegeben. Unter heftiger Gasentwicklung und Niederschlagsbildung

färbte sich die Reaktionsmischung orange. Die filtrierte Lösung des in situ gebildeten Komplexes [W- $(CO)_3(NO)(PMe_3)(FPF_5)$] wurde mit 0.31 g (1.1 mmol) Ph₂PC₆H₄NH₂-2 in 15 ml CH₂Cl₂ versetzt und 2 h bei Raumtemp. gerührt. Das nach Entfernen des Lösemittels erhaltene Rohprodukt wurde in 5 ml CH₂-Cl₂ gelöst, die Lösung filtriert und auf -50° C gekühlt. Nach Überschichten mit 15 ml n-Hexan, Erwärmen auf Raumtemp. und erneutem Abkühlen auf -20°C erhielt man 7a als hellgelben kristallinen Niederschlag, der mit 2×2 ml CH₂Cl₂/n-Hexan in der Kälte gewaschen und im Vakuum getrocknet wurde. Ausb.: 0.28 g (36%). Gef.: C, 36.01; H, 3.01; N, 3.64. $C_{22}H_{25}F_6N_2O_3P_3W$ (768.22) ber.: C, 35.96; H, 3.28; N, 3.65%. ¹H-NMR (CD₂Cl₂): $\delta = 1.16$ (d, ²J(PH) = 8.5 Hz, PCH_3); 4.79 und 5.04 (jeweils br. AB-Dublett, $^{2}J(\text{HH}) \approx 15 \text{ Hz}, \text{ NH}_{2}$). $^{13}C\{^{1}\text{H}\}\text{-NMR} (\text{THF-}d_{8})$: $\delta =$ 15.1 (d, ${}^{1}J(PC) = 28.6$ Hz, PCH_{3}); 210.3 (dd, cis- $^{2}J(PC) = 6.3$, trans- $^{2}J(PC) = 40.2$ Hz, CO).

6.3.12. cis, cis- $[W(CO)_2(NO)(PPh_2Me)(\eta^2 - Ph_2P - C_6H_4NH_7 - 2)][PF_6]$ (7b)

Die Darstellung erfolgte entsprechend **7a** aus 0.73 g (1.4 mmol) $[W(CO)_5(PPh_2Me)]$ [24], 0.24 g (1.4 mmol) NO[PF₆] und 0.47 g (1.7 mmol) Ph₂PC₆H₄NH₂-2 in CH₂Cl₂; Identifizierung durch IR- und NMR-Spektroskopie.

Abb. 7. Verknüpfung der Kationen 1 und 2 (ohne Phenylringe an P(1) bis P(4)) von Komplex 9 mit ihren $[BF_4]^-$ -Gegenionen. Wasserstoffverbrückte Kontaktabstände: N(12) \cdots F(4), 2.889; N(12) \cdots F(7), 2.905; N(21) \cdots F(2), 2.870; N(21) \cdots F(7), 2.913; O(1) \cdots N(22), 2.952 Å.

6.3.13. cis, cis- $[W(CO)_2(NO)(\eta^1 - Ph_2PC_6H_4NH_2-2) - (\eta^2 - Ph_2PC_6H_4NH_2-2)][SbF_6]$ (8-SbF₆)

Die Lösung von 0.29 g (0.5 mmol) $[W(CO)_2(NO)-(MeCN)_3][SbF_6]$ [17] in 3 ml CH₂Cl₂ wurde mit 0.30 g (1.1 mmol) Ph₂PC₆H₄NH₂-2, gelöst in 5 ml CH₂Cl₂, 15 min bei Raumtemp. gerührt und dann zur Trockne eingedampft. Nach zweimaligem Umkristallisieren aus CH₂Cl₂/Ether wurden 0.22 g (40%) hellgelbe Kristalle erhalten. Gef.: C, 43.22; H, 3.28; N, 3.51. C₃₈H₃₂-F₆N₃O₃P₂SbW (1060.23) ber.: C, 43.05; H, 3.04; N, 3.96%.

6.3.14. cis, cis- $[W(CO)(NO)(\eta^2 - Ph_2PC_6H_4NH_2 - 2)_2] - [BF_4]$ (9)

0.54 g (1.1 mmol) $[W(CO)_2(NO)(MeCN)_3][BF_4]$ und 0.92 g (3.3 mmol) Ph₂PC₆H₄NH₂-2 wurden in CH₂Cl₂ (10 ml) 5 min bei Raumtemp. gerührt. Nach Entfernen des Lösemittels verblieb ein Gemisch aus **8**-BF₄ und **9** als oranger Feststoff, der in 5 ml CH₂Cl₂ erneut aufgelöst wurde. Nach 2 h bei Raumtemp. wurden unter Rühren 30 ml Ether zugetropft, wobei sich ein gelber flockiger Niederschlag bildete, der verworfen wurde. Die klare Lösung wurde im Vakuum eingedampft und der Rückstand aus CH₂Cl₂/Ether umkristallisiert. Ausb.: 0.61 g (64%) oranger Komplex **9**. Gef.: C, 50.87; H, 3.94; N, 4.64. C₃₇H₃₂BF₄N₃O₂P₂W (883.28) ber.: C, 50.31; H, 3.65; N, 4.76%. ¹³C{¹H}-NMR (CDCl₃): $\delta = 227.8$ (dd, $cis^{-2}J(PC) = 3.2$, $trans^{-2}J(PC)$ = 47.4 Hz, CO).

6.4. Strukturanalytische Arbeiten [25*]

6.4.1. $[NEt_4][W(CO)_4(PPh_2Me)Cl]$

Kristallzuchf aus Aceton; Kristallgröße ca. 0.2×0.2 $\times 0.2$ mm; Philips PW 1100 (18 ± 2°C); Ag-K α -Strahlung ($\lambda = 0.56014$ Å); Bestimmung der Gitterkonstanten mit Hilfe 65 diffraktometrisch zentrierter Reflexe $(16^{\circ} \le 2\theta \le 28^{\circ}); M_{r} = 661.82 (C_{25}H_{33}CINO_{4}PW);$ monoklin $P2_1$; a = 8.4912(5), b = 18.153(1), c =9.3818(4) Å, $\beta = 105.831(4)^{\circ}$, V = 1391.3(1) Å³; Z = 2, $D_{\rm c} = 1.580 \text{ g cm}^{-3}; \ \mu(\text{Ag-K}\alpha) = 21.9 \text{ cm}^{-1}. \ \omega$ -scan (6° $\leq 2\theta \leq 40^{\circ}; -10 \leq h \leq 14, -22 \leq k \leq 22, 0 \leq l \leq 11);$ 4946 unabhängige Reflexe mit 3601 signifikanten Strukturfaktoren ($|F_{o}| > 4\sigma |F_{o}|$); keine Absorptionskorrektur. Lösung der Struktur durch Patterson-Synthese (SHELXS86 [26]) und anschließende Differenz-Fourier-Synthesen; Verfeinerung nach Blockmatrix-LSQ-Methoden mit anisotropen Temperaturfaktoren ohne Berücksichtigung der H-Atome (SHELXS76 [27]);

TABELLE 3. Atomkoordinaten $(\times 10^{-4})$ and äquivalente is	otrope
Temperaturfaktoren $U_{\bar{a}q} = (A^2 \times 10^3)$ von [NEt ₄][W(CO) ₄ (PPh	1 ₂ Me)-
Cl] ^b	

Atom	x	у	z	U _{äq}
W (1)	61(1)	0(0)	1189(1)	45(1)
P(1)	- 2731(6)	594(3)	216(6)	52(3)
CI(1)	- 1697(8)	-1179(3)	554(7)	86(4)
C(1)	- 275(26)	184(12)	3194(14)	65(15)
O(1)	- 349(23)	288(9)	4330(11)	102(14)
C(2)	1443(19)	913(8)	1477(27)	78(16)
O(2)	2266(18)	1392(7)	1751(24)	101(13)
C(3)	2062(18)	- 601(11)	2106(21)	55(12)
O(3)	3185(15)	- 904(9)	2665(18)	85(12)
C(4)	547(22)	-25(27)	- 786(14)	75(13)
O(4)	893(20)	- 95(19)	- 1832(13)	122(15)
C(5)	- 4171(19)	172(7)	1136(19)	54(11)
C(6)	- 3724(20)	488(10)	- 1760(20)	51(10)
C(7)	- 2896(27)	777(13)	- 2754(27)	75(15)
C(8)	- 3560(43)	724(16)	- 4284(28)	104(21)
C(9)	- 5143(39)	442(13)	- 4894(30)	97(19)
C(10)	- 5873(28)	190(13)	- 3894(30)	106(20)
C(11)	- 5316(26)	215(10)	- 2313(29)	81(15)
C(12)	- 2948(23)	1616(10)	442(21)	55(11)
C(13)	- 4309(28)	1914(13)	732(27)	82(16)
C(14)	-4385(33)	2713(15)	823(34)	99(20)
C(15)	- 3191(41)	3137(13)	573(33)	99(21)
C(16)	1867(29)	2835(12)	316(28)	75(15)
C(17)	- 1689(28)	2064(12)	205(25)	73(15)
N(1)	1902(20)	2780(10)	4600(20)	67(11)
C(18)	3388(31)	2981(14)	- 3475(28)	87(17)
C(19)	4896(33)	2506(16)	- 3497(47)	125(23)
C(20)	1275(73)	2028(27)	- 4413(110)	235(63)
C(21)	1254(66)	1813(28)	- 2776(63)	215(50)
C(22)	2021(50)	2888(20)	- 6254(38)	143(30)
C(23)	2723(67)	3632(22)	6492(47)	205(43)
C(24)	494(52)	3306(18)	- 4381(37)	145(30)
C(25)	- 1284(48)	3143(24)	- 5368(46)	136(30)

^a Berechnet als ein Drittel der Spur des orthogonalen U_{ij} Tensors. ^b Atome W(1) bis C(17): [W(CO)₄(PPh₂Me)Cl]⁻; Atome N(1) bis C(25): [NEt₄]⁺.

Konvergenz bei R = 0.056 und $wR_F = 0.064$; minimierte Funktion: $\sum w(|F_o| - |F_c|)^2$ mit Einheitsgewichten. Atomkoordinaten und äquivalente isotrope Temperaturfaktoren in Tab. 3.

6.4.2. $[W(CO)_4(PPh_2Me)(Ph_2PC_6H_4NH_2-2)]$

Einkristalle aus THF/n-Pentan; Kristallgröße ca. $0.4 \times 0.4 \times 0.15$ mm; Philips PW 1100 (18 ± 2°C); Ag-K α -Strahlung ($\lambda = 0.56014$ Å); Gitterkonstanten aus 60 diffraktometrisch zentrierten Reflexen (16° ≤ 2 θ ≤ 20°); $M_r = 773.42$ (C₃₅H₂₉NO₄P₂W); monoklin P2₁/n; a = 16.9910(3), b = 16.2929(4), c = 11.5395(3) Å, $\beta =$ 90.937(2)°, V = 3194.1(1) Å³; $Z = 4, D_c = 1.609$ g cm⁻³; μ (Ag-K α) = 20.3 cm⁻¹. ω -scan (6° ≤ 2 θ ≤ 36°; -18 ≤ $h \le 18, -2 \le k \le 17, -2 \le l \le 12$); 4242 unabhängige Reflexe; keine Absorptionskorrektur. Lösung der Struktur durch Direkte Methoden (SHELXS86) und anschließende Differenz-Fourier-Synthesen; Ver-

^{*} Die Literaturnummer mit einem Sternchen deutet eine Bemerkung in der Literaturliste an.

feinerung nach Vollmatrix-LSQ-Methoden; anisotrope Auslenkungsparameter für alle Nicht-H-Atome mit Ausnahme des Kohlenstoffatoms C(4), das nur isotrop zu verfeinern war; H-Atome in geometrisch idealisierten Positionen mit isotropem Verhalten und freier Drehbarkeit der Methylgruppen berücksichtigt (SHELX93 [28]); Gütefaktoren: $wR_{F^2} = 0.143$ (R = 0.094) für alle 4242 Daten, R = 0.045 für 2916 $|F_o| > 4\sigma |F_o|$; minimierte Funktion: $\Sigma w(F_o^2 - F_c^2)^2$; w =

TABELLE 4. Atomkoordinaten (×10⁻⁴) und äquivalente isotrope Temperaturfaktoren $U_{\bar{a}q}^{a}$ (Å²×10³) von [W(CO)₄(PPh₂Me)(Ph₂-Ph₂-Me)(Ph₂-P

Atom	x	у	z	U _{äq}
W (1)	2738(1)	2666(1)	367(1)	36(1)
C(1)	1618(7)	2249(6)	298(10)	44(3)
O(1)	982(5)	2011(6)	284(8)	75(3)
C(2)	3092(8)	1680(8)	- 500(3)	55(3)
O(2)	3307(6)	1106(6)	-965(8)	88(3)
C(3)	3872(7)	3009(7)	531(10)	45(3)
O(3)	4533(5)	3142(6)	662(8)	70(3)
C(4)	2911(6)	1994(7)	1785(9)	41(3)
O(4)	3032(5)	1582(6)	2571(7)	73(3)
P(1)	2600(2)	3433(2)	- 1574(2)	39(1)
C(111)	1585(6)	3717(7)	- 1964(8)	39(3)
C(112)	1345(7)	4541(9)	- 2122(9)	58(3)
C(113)	549(8)	4698(8)	-2312(11)	66(4)
C(114)	4(8)	4091(10)	- 2337(11)	68(4)
C(115)	226(7)	3290(10)	- 2178(10)	68(4)
C(116)	1016(7)	3119(9)	- 2015(9)	58(3)
C(121)	3150(6)	4378(7)	- 1781(9)	42(3)
C(122)	3200(7)	4785(8)	- 2847(10)	51(3)
C(123)	3651(8)	5508(8)	- 2942(12)	64(4)
C(124)	4061(8)	5808(9)	- 2035(13)	72(4)
C(125)	4015(7)	5401(8)	- 989(12)	63(4)
C(126)	3581(7)	4714(8)	- 882(10)	50(3)
N(1)	2826(7)	4507(8)	- 3832(11)	92(4)
C(131)	2963(7)	2836(7)	- 2771(9)	46(3)
C(132)	3765(8)	2676(9)	- 2817(11)	68(4)
C(133)	4077(9)	2203(9)	- 3690(14)	81(5)
C(134)	3605(11)	1864(10)	-4515(13)	89(5)
C(135)	2820(10)	1968(12)	- 4451(12)	93(5)
C(136)	2495(8)	2464(7)	-3616(11)	64(4)
P(2)	2323(2)	3874(2)	1593(2)	40(1)
C(211)	3149(6)	4362(7)	2355(9)	39(3)
C(212)	3401(7)	5158(8)	2119(10)	55(3)
C(213)	4046(8)	5496(9)	2721(12)	74(4)
C(214)	4414(9)	5036(11)	3542(13)	83(5)
C(215)	4168(8)	4274(10)	3793(12)	77(4)
C(216)	3543(7)	3914(8)	3207(10)	56(3)
C(221)	1672(6)	3694(7)	2829(9)	43(3)
C(222)	1335(8)	2950(10)	3015(11)	71(4)
C(223)	820(9)	2859(10)	3945(12)	83(5)
C(224)	665(8)	3488(11)	4662(11)	78(5)
C(225)	1003(8)	4233(10)	4456(11)	66(4)
C(226)	1503(7)	4332(8)	3568(9)	53(3)
((231)	1800(7)	4/11(7)	851(10)	55(5)

^a s. Tab. 3.

TABELLE 5. Atomkoordinaten (×10⁴) und äquivalente isotrope Temperaturfaktoren $U_{\text{äq}}^{a}$ (Å²×10³) von [W(CO)₄(η^{2} -Ph₂PC₆H₄-NH₂-2)]·[NEt₄]Cl^b

Atom	x	У	z	U _{äq}
W (1)	924(1)	53(1)	2776(1)	32(1)
C(1)	2460(10)	514(7)	2701(9)	42(3)
O(1)	3320(9)	804(6)	2742(8)	83(8)
C(2)	1275(12)	373(7)	4121(10)	53(4)
O(2)	1465(10)	556(6)	4891(7)	89(4)
C(3)	210(10)	990(8)	2381(10)	51(4)
O(3)	- 107(9)	1570(5)	2217(7)	68(3)
C(4)	- 684(11)	- 351(6)	2866(9)	39(3)
O(4)	- 1576(8)	- 507(5)	2932(7)	72(3)
P(1)	1884(3)	- 1134(2)	3076(2)	33(1)
C(11)	1365(9)	- 1611(6)	1961(8)	35(3)
C(12)	1492(12)	- 2331(6)	1826(9)	53(4)
C(13)	1076(12)	- 2663(7)	956(10)	59(4)
C(14)	509(12)	- 2262(7)	200(9)	49(4)
C(15)	352(10)	- 1529(7)	336(9)	47(3)
C(16)	747(10)	- 1217(6)	1203(8)	35(3)
N(1)	583(8)	- 456(5)	1290(7)	31(2)
C(21)	3485(10)	- 1158(6)	3277(7)	32(3)
C(22)	4112(11)	- 827(6)	4083(9)	45(3)
C(23)	5310(10)	- 823(6)	4276(9)	45(3)
C(24)	5900(11)	- 1134(7)	3683(10)	51(4)
C(25)	5289(11)	- 1480(9)	2890(9)	71(5)
C(26)	4069(11)	- 1491(7)	2678(8)	50(4)
C(31)	1672(9)	- 1717(6)	4038(7)	32(3)
C(32)	903(10)	- 1500(7)	4577(8)	45(3)
C(33)	725(12)	- 1929(8)	5341(9)	56(4)
C(34)	1334(13)	- 2548(8)	5547(10)	60(4)
C(35)	2113(12)	- 2751(7)	5035(10)	57(4)
C(36)	2279(11)	- 2335(7)	4276(8)	45(3)
N(40)	- 3746(8)	1319(5)	1684(7)	43(3)
C(41)	- 2997(11)	1073(8)	2621(9)	58(4)
C(42)	- 3595(12)	1056(9)	3436(10)	79(5)
C(43)	- 4182(11)	2068(7)	1773(10)	55(4)
C(44)	- 3263(14)	2625(8)	2013(12)	101(7)
C(45)	- 2964(10)	1286(7)	976(9)	50(4)
C(46)	- 3492(12)	1548(8)	- 2(9)	70(5)
C(47)	- 4793(11)	868(7)	137 4(9)	53(4)
C(48)	- 4574(14)	87(8)	1338(11)	90(6)
Cl(1)	2094(3)	298(2)	- 7(2)	56(1)

^a s. Tab 3. ^b Atome W(1) bis C(36): [W(CO)₄(η^2 -Ph₂PC₆H₄NH₂-2)]; Atome N(40) bis Cl(1): [NEt₄]Cl.

 $1/{\sigma^2(F_o^2) + [0.0644(Max (F_o^2, 0) + 2F_c^2)/3]^2}$. Ergebnisse in Tab. 4.

6.4.3. $[W(CO)_4(\eta^2 - Ph_2PC_6H_4NH_2 - 2)] \cdot [NEt_4]Cl$

Einkristalline Prismen aus CH₂Cl₂; Kristallgröße ca. $0.3 \times 0.3 \times 0.2$ mm; Philips PW 1100 (18 ± 2°C); Ag-K α -Strahlung ($\lambda = 0.56014$ Å); Gitterkonstanten aus 23 diffraktometrisch zentrierten Reflexen (18° ≤ 2 θ ≤ 26°); $M_r = 738.90$ (C₃₀H₃₆ClN₂O₄PW); monoklin P2₁/n; a = 11.774(1), b = 18.755(3), c = 14.493(3) Å, $\beta = 103.10(1)^\circ$, V = 3117.1(9) Å³; Z = 4, $D_c = 1.575$ g cm⁻³; μ (Ag-K α) = 20.9 cm⁻¹. ω -scan (6° ≤ 2 θ ≤ 38°; $-13 \le h \le 13$, $-2 \le k \le 21$, $-2 \le l \le 16$); 5097 unabhängige Reflexe; keine Absorptionskorrektur. Lösung und Verfeinerung durch Direkte Methoden (SHELXS86) und Vollmatrix-LSQ-Verfahren; anisotrope Auslenkungsparameter für alle Nicht-H-Atome; Berücksichtigung der H-Atome in geometrisch idealisierten Positionen mit isotropem Verhalten und freier Drehbarkeit der Methylgruppen (SHELX93); $wR_{\rm F^2} =$ 0.134 (R = 0.139) für alle 5097 Daten, R = 0.056 für 2770 | $F_{\rm o}$ | > 4 σ | $F_{\rm o}$ |; minimierte Funktion: $\Sigma w(F_{\rm o}^2 - F_{\rm c}^2)^2$; $w = 1/{\sigma^2(F_{\rm o}^2) + [0.0539]}$ (Max ($F_{\rm o}^2$, 0) + $2F_{\rm c}^2$)/3]²}. Ergebnisse in Tab. 5.

TABELLE 6. Atomkoordinaten $(\times 10^4)$ und äquivalente isotrope Temperaturfaktoren $U_{ag}^{a}(\text{\AA}^2 \times 10^3)$ von $[W(CO)_2(NO)(PMe_3)(\eta^2 - Ph_2PC_6H_4NH_2-2)]PF_6]^{b}$

Atom	x	у	z	$U_{\rm \ddot{a}q}$	C
W(1)	7215(1)	74(1)	4534(1)	43(1)	C
P(1)	6996(2)	- 2112(3)	5144(2)	43(1)	C
P(2)	6597(2)	- 1090(3)	3226(2)	52(2)	C
O(1)	7861(8)	2666(12)	3902(7)	114(7)	C
O(2)	7862(8)	1747(12)	6053(6)	115(7)	C
O(3)	5507(7)	1374(13)	4190(7)	120(7)	C
N(1)	6191(7)	847(12)	4308(6)	68(5)	C
N(2)	8467(5)	- 1142(10)	4862(5)	53(4)	C
C(1)	7631(10)	1711(15)	4113(8)	76(7)	Ċ
C(2)	7685(8)	1081(13)	5526(8)	67(7)	C
C(3)	6701(12)	0(14)	2505(8)	86(7)	C
C(4)	7036(9)	- 2760(15)	3129(8)	82(7)	C
C(5)	5464(7)	- 1382(21)	2836(8)	97(8)	C
C(6)	7926(7)	- 3165(12)	5312(6)	52(5)	C
C(7)	8052(8)	- 4527(13)	5594(7)	65(6)	C
C(8)	8794(10)	- 5291(14)	5742(8)	73(7)	C
C(9)	9420(9)	- 4662(15)	5611(8)	73(6)	C
C(10)	9319(8)	- 3286(14)	5320(7)	64(6)	C
C(11)	8569(6)	- 2556(11)	5163(6)	47(4)	C
C(12)	6077(8)	- 3241(14)	4646(6)	63(5)	C
C(13)	5282(9)	- 2750(24)	4586(9)	123(10)	C
C(14)	4561(13)	- 3577(35)	4174(13)	178(17)	C
C(15)	4586(20)	- 4727(34)	3779(17)	196(21)	C
C(16)	5298(17)	- 5129(22)	3792(14)	140(14)	(
C(17)	6073(11)	- 4428(16)	4250(8)	86(8)	0
C(18)	7003(7)	- 1861(12)	6062(7)	54(5)	C
C(19)	7399(14)	- 2656(20)	6681(10)	126(12)	C
C(20)	7413(22)	- 2297(46)	7434(17)	329(36)	C
C(21)	6918(20)	- 1736(35)	7343(13)	179(18)	V
C(22)	6448(16)	- 529(32)	6823(19)	171(20)	F
C(23)	6468(10)	- 903(35)	6139(11)	175(14)	F
P(3)	5389(2)	4037(4)	1540(2)	62(1)	C
F(1)	6128(8)	4234(13)	2341(5)	147(6)	0
F(2)	5877(7)	2774(11)	1357(5)	131(6)	(
F(3)	4624(6)	3784(11)	725(5)	123(5)	1
F(4)	5002(7)	2897(11)	1875(6)	122(6)	1
F(5)	4895(10)	5269(12)	1661(8)	153(9)	1
>	E000(10)	5002(11)	1200(0)	149(10)	

^a s. Tab 3. ^b Atome W(1) bis C(23): $[W(CO)_2(NO)/PMe_3)(\eta^2 - Ph_2PC_6H_4NH_2-2)]^+$; Atome P(3) bis F(6): $[PF_6]^-$.

Atom	x	у	z	U _{äq}
W(1)	2316(1)	2407(1)	9858(1)	30(1)
P(1)	3874(2)	2777(1)	9207(1)	31(1)
P(2)	394(2)	1590(1)	9003(1)	30(1)
O(1)	508(5)	2292(3)	10785(2)	60(1)
O(2)	4492(5)	3338(3)	11020(3)	72(1)
O(3)	3342(5)	1107(3)	10214(2)	63(1)
N(1)	2880(5)	1616(3)	10075(3)	44(1)
N(2)	1816(5)	3457(3)	9586(2)	35(1)
N(3)	- 934(5)	2896(3)	9013(3)	38(1)
C(1)	1133(6)	2350(3)	10433(3)	42(1)
C(2)	3713(7)	3025(4)	10583(3)	50(1)
C(3)	2501(6)	3862(3)	9200(3)	32(1)
C(4)	2143(7)	4498(4)	9028(3)	52(1)
C(5)	2788(7)	4891(4)	8667(3)	53(1)
C(6)	3778(7)	4661(4)	8469(3)	54(1)
C(7)	4111(6)	4026(3)	8624(3)	44(1)
C(8)	3497(6)	3629(3)	9003(3)	35(1)
C(9)	5532(6)	2955(3)	9683(3)	32(1)
C(10)	5946(6)	2404(4)	9984(3)	47(1)
C(11)	7219(7)	2502(4)	10357(4)	56(1)
C(12)	8044(7)	3153(4)	10447(3)	55(1)
C(13)	7667(7)	3708(4)	10141(3)	51(1)
C(14)	6412(6)	3606(3)	9763(3)	43(1)
C(15)	3922(6)	2302(3)	8457(3)	31(1)
C(16)	2807(6)	2157(3)	7960(3)	42(1)
C(17)	2774(7)	1763(4)	7393(3)	54(1)
C(18)	3844(7)	1528(4)	7302(4)	58(1)
C(19)	4978(7)	1688(4)	7789(4)	59(1)
C(20)	5014(7)	2071(4)	8359(3)	52(1)
C(21)	-417(6)	1960(3)	8327(3)	32(1)
C(22)	- 958(6)	2567(3)	8407(3)	34(1)
C(23)	- 1491(6)	2865(4)	7879(3)	46(1)
C(24)	- 1516(6)	2547(4)	7284(3)	51(1)
C(25)	- 1036(6)	1936(4)	7201(3)	47(1)
C(26)	- 484(6)	1643(3)	7717(3)	40(1)
C(27)	-967(6)	1189(3)	9307(3)	36(1)
C(28)	- 2245(6)	1157(3)	9005(3)	44(1)
C(29)	- 3249(7)	835(4)	9248(4)	55(1)
C(30)	- 2958(7)	537(4)	9788(4)	61(1)
C(31)	- 1709(7)	541(4)	10082(4)	56(1)
C(32)	- 687(6)	865(3)	9845(3)	41(1)
C(33)	808(6)	770(3)	8675(3)	31(1)
C(34)	2093(6)	744(3)	8704(3)	37(1)
C(35)	2365(7)	99(3)	8452(3)	44(1)
C(36)	1385(7)	- 497(4)	8175(3)	54(1)
C(37)	123(7)	- 474(4)	8145(4)	58(1)
C(38)	- 179(7)	159(4)	8391(3)	50(1)
W(2)	1518(1)	3550(1)	4454(1)	26(1)
P(3)	- 858(2)	2879(1)	4117(1)	28(1)
P(4)	2041(2)	3131(1)	5535(1)	28(1)
O(4)	4499(5)	4112(3)	4574(2)	64(1)
O(5)	1119(5)	4244(3)	3208(2)	54(1)
O(6)	1442(5)	5041(3)	5020(2)	57(1)
N(4)	1594(5)	2469(2)	3957(2)	31(1)
N(5)	1461(5)	4435(3)	4805(2)	37(1)
N(6)	3482(5)	2041(3)	4998(2)	40(1)
C(39)	3412(6)	3888(3)	4533(3)	37(1)
C(40)	1213(6)	3937(3)	3623(3)	32(1)
C(41)	472(6)	1863(3)	3777(3)	32(1)

TABELLE 7. Atomkoordinaten $(\times 10^4)$ und äquivalente isotrope Temperaturfaktoren $U_{\rm äq}^{a}$ (Å²×10³) von [W(CO)₂(NO)(η^1 -Ph₂P-C₆H₄NH₂-2)(η^2 -Ph₂PC₆H₄NH₂-2)[SbF₆]·0.5Et₂O·0.5CH₂Cl₂^b

TABELLE 7 (Fortsetzung)

TABELLE 8. Atomkoordir	uaten (×10 ⁴) u	nd äquivalente	isotrope
Temperaturfaktoren U_{ag}^{a}	$(Å^2 \times 10^3)$ von	[W(CO)(NO)($\eta^2 - Ph_2P$
C ₆ H ₄ NH ₂ -2) ₂ [BF ₄]·H ₂ O ^b			-

U_{äq} 49(1)

44(1)

55(2)

51(2)

50(2)

49(2) 93(2)

62(2)

52(2)

78(2)

56(2)

59(2)

84(2)

106(2)

89(2)

86(2)

53(2)

65(2)

61(2)

72(2)

100(2)

95(2)

76(2)

53(2)

62(2)

53(2)

88(2)

105(2)

118(2)

84(2)

70(2)

88(2)

114(2)

110(2)

109(2)

97(2)

58(2)

84(2)

102(2)

104(2)

99(2)

77(2)

63(2)

78(2)

102(2)

103(2)

95(2)

78(2)

57(2)

63(2)

75(2)

81(2)

77(2)

75(2)

55(2)

68(2)

73(2)

94(2)

74(2)

Atom	x	у	Z	U _{äq}	Tempera C ₆ H₄NI	turfaktoren U I ₂ -2) ₂ ∦ BF ₄]·H	/ _{äq} * (A ² ×10 ³) ₂ O ^b	von [W(C
C(42)	616(6)	1179(3)	3674(3)	41(1)	Atom			
C(43)	-427(6)	608(4)	3388(3)	49(1)	Atom	x	У	Z
C(44)	- 1653(6)	726(3)	3389(3)	46(1)	W (1)	7723(1)	7927(1)	6114(1)
C(45)	- 1821(6)	1400(3)	3594(3)	38(1)	W(2)	7108(1)	6847(1)	8940(1)
C(46)	- 743(6)	1983(3)	3795(3)	30(1)	P(1)	6272(5)	8515(3)	6092(3)
C(47)	- 1836(6)	3248(3)	3494(3)	32(1)	P(2)	7996(4)	7329(3)	4712(3)
C(48)	- 2524(6)	2831(3)	2920(3)	40(1)	P(3)	8344(4)	6749(3)	9910(3)
C(49)	- 3247(6)	3138(4)	2463(3)	53(1)	P(4)	6035(4)	7634(3)	9769(3)
C(50)	- 3299(7)	3856(4)	2570(3)	53(1)	N(1)	8636(16)	8867(12)	6310(11)
C(51)	- 2610(6)	4281(4)	3122(3)	50(1)	N(2)	6258(13)	5885 <u>(</u> 8)	8779(9)
C(52)	- 1851(6)	3985(3)	3587(3)	44(1)	N(11)	6371(11)	6800(9)	5851(9)
C(53)	- 1878(6)	2694(3)	4656(3)	29(1)	N(12)	8747(13)	7087(11)	6036(10)
C(54)	- 1877(6)	2075(3)	4937(3)	40(1)	N(21)	8396(11)	6422(9)	8268(8)
C(55)	- 2590(6)	1950(4)	5379(3)	53(1)	N(22)	8095(12)	8165(9)	9265(9)
C(56)	- 3273(6)	2436(4)	5543(3)	53(1)	O(1)	7671(12)	8473(9)	7880(9)
C(57)	- 3296(6)	3057(4)	5263(3)	49(1)	O(2)	9233(13)	9511(10)	6467(10)
C(58)	- 2603(6)	3179(3)	4823(3)	38(1)	O(3)	5980(12)	6905(9)	7491(9)
C(59)	1203(6)	3484(3)	6090(3)	34(1)	O(4)	5602(12)	5294(9)	8706(9)
C(60)	235(6)	3854(3)	5898(3)	33(1)	C(1)	7636(14)	8245(11)	7222(10)
C(61)	- 327(6)	4155(3)	6335(3)	40(1)	C(2)	6452(15)	6895(11)	8029(12)
C(62)	98(6)	4119(3)	6955(3)	43(1)	C(10)	5164(15)	7706(11)	6018(11)
C(63)	1058(6)	3746(4)	7154(3)	49(1)	C(11)	4176(16)	7806(13)	6094(12)
C(64)	1634(6)	3437(3)	6732(3)	42(1)	C(12)	3409(19)	7194(15)	6066(14)
C(65)	3726(6)	3484(3)	6010(3)	33(1)	C(13)	3579(18)	6477(15)	5946(14)
C(66)	4278(6)	4212(4)	6038(3)	45(1)	C(14)	4561(16)	6312(13)	5850(12)
C(67)	5479(7)	4525(4)	6434(3)	60(1)	C(15)	5368(14)	6970(11)	5911(10)
C(68)	6120(7)	4108(4)	6825(4)	65(1)	C(16)	9053(15)	6896(11)	4727(11)
C(69)	5587(6)	3397(4)	6811(3)	54(1)	C(17)	9336(14)	6816(10)	5412(11)
C(70)	4384(6)	3081(4)	6400(3)	42(1)	C(18)	10086(17)	6412(13)	5433(14)
C(71)	1787(6)	2150(3)	5543(3)	30(1)	C(19)	10655(19)	6151(15)	4845(15)
C(72)	2516(6)	1727(3)	5273(3)	36(1)	C(20)	10463(19)	6262(16)	4217(16)
C(73)	2230(6)	976(3)	5266(3)	47(1)	C(21)	9624(16)	6624(13)	4128(14)
C(74)	1276(7)	658(4)	5522(3)	55(1)	C(22)	6067(16)	8852(12)	5333(12)
C(75)	546(7)	1070(4)	5773(3)	51(1)	C(23)	6897(18)	9288(13)	5152(13)
C(76)	823(6)	1812(3)	5802(3)	37(1)	C(24)	6791(20)	9593(16)	4584(15)
Sb(1)	- 1956(1)	5150(1)	8725(1)	42(1)	C(25)	5884(19)	9426(15)	4214(15)
F(1)	- 1151(5)	6108(3)	8986(3)	104(1)	C(26)	5050(20)	8962(15)	4317(15)
F(2)	- 3294(5)	5406(3)	8159(2)	95(1)	C(27)	5120(19)	8659(14)	4915(14)
F(3)	- 654(5)	4873(3)	9280(3)	101(1)	C(28)	6142(14)	9361(11)	6950(11)
F(4)	- 1067(5)	5071(3)	8113(2)	90(1)	C(29)	6410(17)	10161(12)	6977(13)
F(5)	- 2786(5)	4179(2)	8494(2)	85(1)	C(30)	6402(18)	10812(15)	7725(15)
F(6)	- 2836(4)	5241(2)	9353(2)	63(1)	C(31)	6135(17)	10639(15)	8346(15)
Sb(2)	3872(1)	43(1)	3560(1)	86(1)	C(32)	5866(17)	9855(15)	8324(15)
F(7)	2274(6)	- 323(4)	3690(4)	160(1)	C(33)	5856(16)	9211(13)	7579(12)
F(8)	3425(8)	- 527(5)	2758(4)	214(1)	C(34)	6951(15)	6469(11)	4060(11)
F(9)	4080(7)	762(4)	4164(4)	194(1)	C(35)	7153(17)	5710(12)	3683(12)
F(10)	4287(8)	- 749(5)	3776(5)	258(1)	C(36)	6310(18)	5083(15)	3204(14)
F(11)	2965(8)	631(5)	3059(4)	225(1)	C(37)	5425(19)	5282(15)	3165(14)
F(12)	5264(6)	414(4)	3330(4)	176(1)	C(38)	5213(18)	6051(14)	3515(14)
O(7)	- 2405(4)	7235(3)	7136(2)	52(1)	C(39)	6017(16)	6662(13)	4000(12)
C(77)	- 4485(7)	7346(5)	6559(4)	81(1)	C(40)	8353(14)	7963(11)	4178(10)
C(78)	- 3747(7)	6981(4)	7049(4)	74(1)	C(41)	7879(15)	7853(12)	3494(11)
C(79)	-238(7)	7368(4)	7761(3)	66(1)	C(42)	8218(16)	8348(13)	3124(12)
C(80)	- 1665(7)	7043(4)	7681(3)	61(1)	C(43)	9049(16)	8921(13)	3392(12)
Cl(1)	3099(3)	1498(2)	1677(2)	134(1)	C(44)	9606(16)	9081(13)	4107(12)
Cl(2)	5563(3)	1200(2)	1645(2)	160(1)	C(45)	9230(16)	8585(12)	4494(12)
C(81)	4081(8)	934(5)	1793(5)	113(1)	C(50)	9177(14)	6172(11)	9317(11)
a	b	V(1) 1: 0(70) fr			C(51)	9834(15)	5807(11)	/558(12)
- s. Tab 3	\cdot Atome V	$\begin{array}{c} (1) \text{Dis} \mathbb{C}(76); [W] \\ (W) \mathbb{C}(76) \\ $	$((U))_2(N($	η^{-} η_{2}^{-} η_{4}^{-}	C(52)	10461(16)	5376(12)	9065(12)
NH ₂ -2)(η ⁴	$-rn_2rC_6H_4$	(Katior	ien i und	2; Atome Sb(1)	C(53)	10406(17)	5301(14)	8319(14)

C(54)

9711(16)

5636(12)

8057(12)

bis $\overline{F}(12)$: $[SbF_6]^-$ (Anionen 1 und 2); Atome O(7) bis C(80): Solvat-Et₂O; Atome Cl(1) bis C(81): Solvat-CH₂Cl₂.

TABELLE 8 (Fortsetzung)

Atom	x	у	z	U _{äq}
C(55)	9087(15)	6051(11)	8537(11)	61(2)
C(56)	7922(14)	6206(11)	10520(11)	53(2)
C(57)	8191(14)	6501(12)	11296(11)	60(2)
C(58)	7790(16)	6036(13)	11701(12)	76(2)
C(59)	7117(16)	5335(13)	11354(13)	82(2)
C(60)	6897(16)	5025(13)	10599(13)	79(2)
C(61)	7260(15)	5454(12)	10165(12)	69(2)
C(62)	9216(14)	7717(10)	10541(10)	51(2)
C(63)	10268(16)	7866(13)	10466(12)	79(2)
C(64)	10862(19)	8672(14)	10942(14)	101(2)
C(65)	10431(18)	9215(15)	11405(14)	99(2)
C(66)	9392(16)	9099(13)	11492(12)	78(2)
C(67)	8753(16)	8328(12)	11048(11)	71(2)
C(68)	6700(14)	8697(10)	9969(11)	56(2)
C(69)	7608(14)	8829(10)	9698(10)	53(2)
C(70)	8130(16)	9621(12)	9842(12)	71(2)
C(71)	7671(18)	10231(15)	10216(14)	99(2)
C(72)	6756(18)	10127(14)	10460(14)	95(2)
C(72)	6245(17)	0346(12)	10333(12)	78(2)
C(74)	4725(17)	7566(11)	0.0505(12)	60(2)
C(74)	4755(15)	7300(11)	9403(11)	08(2)
C(75)	4353(10)	7/0/(14)	0011(14) 0402(15)	109(2)
C(70)	5512(19) 5782(20)	7050(15)	0403(13)	100(2)
C(70)	2/83(20)	7506(13)	0205(17)	110(2)
C(70)	2899(21)	7134(17)	9393(17)	134(2)
(1/9)	5891(17)	7243(14)	9090(14)	54(2)
C(80)	5865(14)	/558(11)	10058(10)	54(2)
(181)	5931(16)	8220(13)	11381(12)	80(2)
C(82)	57/6(17)	8085(15)	12044(14)	98(2)
(183)	5515(16)	/304(14)	12018(13)	81(2)
(184)	5448(15)	6653(13)	11330(12)	69(2) 67(2)
C(85)	5640(14)	6785(11)	10682(11)	57(2)
B(1)	2666(12)	4679(10)	3876(10)	183(3)
F(1)	2558(20)	5230(12)	3572(15)	206(3)
F(11)	2750(18)	5617(14)	4089(14)	66(3)
F(2)	2445(16)	3913(10)	3303(11)	118(3)
F(22)	2994(25)	4402(22)	3206(22)	165(3)
F(3)	3650(13)	4853(16)	4200(15)	275(3)
F(33)	1494(19)	4507(16)	3591(16)	81(3)
F(4)	2010(18)	4712(16)	4421(12)	234(3)
F(44)	2567(20)	4661(16)	4546(16)	82(3)
B(2)	9657(13)	2024(11)	1877(11)	239(3)
F(5)	9802(20)	1252(11)	1661(16)	212(3)
F(55)	9740(24)	1341(21)	2184(21)	146(3)
F(6)	8708(13)	2054(17)	2115(16)	260(3)
F(66)	8685(22)	1756(19)	1923(19)	109(3)
F(7)	10378(16)	2559(14)	2467(12)	199(3)
F(77)	10717(21)	2361(17)	2177(17)	95(3)
F(8)	9735(20)	2242(15)	1262(12)	174(3)
F(88)	9833(22)	1886(18)	1194(17)	97(3)
O(5)	8228(15)	1389(12)	4166(11)	128(3)
O(6)	7205(15)	409(12)	2723(12)	133(3)

^a s. Tab 3. ^b Atome W(1) bis C(85): $[W(CO)(NO)(\eta^2 - Ph_2PC_6H_4 - NH_2 - 2)_2]^+$ (Kationen 1 und 2); Atome B(1) bis F(88): $[BF_4]^-$ (Anionen 1 und 2); Atome O(5) und O(6): Solvat-H₂O.

6.4.4. $cis, cis-[W(CO)_2(NO)(PMe_3)(\eta^2-Ph_2PC_6H_4-NH_2-2)][PF_6]$

Einkristalline Prismen aus CH_2Cl_2/n -Hexan; Kristallgröße *ca*. 0.35 × 0.25 × 0.20 mm; Nicolet R3 (22°C); Mo-K α -Strahlung ($\lambda = 0.71073$ Å); $M_r = 768.22$ (C₂₃-H₂₅F₆N₂O₃P₃W); monoklin P2₁/n; a = 17.453(8), b = 9.431(5), c = 19.672(11) Å, $\beta = 116.23(2)^\circ$, V = 2905(2)Å³; Z = 4, $D_c = 1.757$ g cm⁻³; μ (Mo-K α) = 42.1 cm⁻¹. $\theta/2\theta$ -scan ($4^\circ \le 2\theta \le 56^\circ$; $-20 \le h \le 20$, $0 \le k \le 12$, $0 \le l \le 26$); 6812 unabhängige Reflexe mit 3459 signifikanten Strukturfaktoren ($|F_o| > 4\sigma |F_o|$); Absorptionskorrektur (DIFABS [29]). Lösung und Verfeinerung durch Direkte Methoden und anschließende Vollmatrix-LSQ-Verfahren; anisotrope Auslenkungsparameter für alle Nicht-H-Atome; H-Atome in geometrisch idealisierten Positionen mit isotropem Verhalten (Siemens SHELXTL PLUS); Gütefaktoren: R = 0.116 und $wR_F = 0.088$ für alle 6812 Daten, R = 0.051 und $wR_F = 0.070$ für 3459 $|F_o| > 4\sigma |F_o|$; minimierte Funktion: $\Sigma w(|F_o| - |F_c|)^2$ mit $w = 1/[\sigma^2(F_o) + 0.005 (F_o^2)]$. Ergebnisse in Tab. 6.

6.4.5. $cis, cis-[W(CO)_2(NO)(\eta^1 - Ph_2PC_6H_4NH_2 - 2) - (\eta^2 - Ph_2PC_6H_4NH_2 - 2)][SbF_6] \cdot 0.5Et_2O \cdot 0.5CH_2Cl_2$

Einkristalle aus CH_2Cl_2/E ther; Kristallgröße ca. $0.3 \times 0.3 \times 0.2$ mm; Siemens R3m/V (-40°C); Mo-K α -Strahlung ($\lambda = 0.71073$ Å); $M_r = 1139.76$ $(C_{40.5}H_{38}ClF_6N_3O_{3.5}P_2SbW)$; triklin $P\overline{1}$; a = 10.843(3), b = 19.002(4), c = 22.222(6) Å, $\alpha = 95.87(2), \beta =$ 103.68(2), $\gamma = 100.43(2)^\circ$, V = 4324(2) Å³; Z = 4, $D_c =$ 1.751 g cm⁻³; μ (Mo-K α) = 36.6 cm⁻¹. $\theta/2\theta$ -scan (4° $\leq 2\theta \leq 48^{\circ}; -10 \leq h \leq 10, -21 \leq k \leq 21, 0 \leq l \leq 25);$ 12914 unabhängige absorptionskorrigierte Strukturfaktoren (DIFABS). Lösung durch Direkte Methoden; Verfeinerung nach Blockmatrix-LSQ-Verfahren mit anisotropen Auslenkungsparametern für alle Nicht-H-Atome; H-Atome in geometrisch idealisierten Positionen mit isotropem Verhalten (Siemens SHELXTL PLUS); R = 0.054 und $wR_{\rm F} = 0.036$ für alle 12914 Daten; minimierte Funktion: $\sum w(|F_{o}| - |F_{c}|)^{2}$ mit $w = 1/\sigma^{2}(F_{o})$. Ergebnisse in Tab. 7.

6.4.6. $cis, cis, cis - [W(CO)(NO)(\eta^2 - Ph_2PC_6H_4NH_2 - 2)_2] - [BF_4] \cdot H_2O$

Kristallzucht aus CH₂Cl₂/Ether; Kristallgröße ca. $0.15 \times 0.2 \times 0.25$ mm; Siemens R3m/V (0°C); Mo-K α -Strahlung ($\lambda = 0.71073$ Å); $M_r = 901.30$ (C₃₇H₃₄-BF₄N₃O₃P₂W); triklin PĪ; a = 13.450(5), b = 18.308(9), c = 19.000(9) Å, $\alpha = 112.71(4)$, $\beta = 91.43(4)$, $\gamma = 101.65(4)^\circ$, V = 4199(3) Å³; Z = 4, $D_c = 1.426$ g cm⁻³; μ (Mo-K α) = 29.8 cm⁻¹. $\theta/2\theta$ -scan (4° $\leq 2\theta \leq 50^\circ$; $-10 \leq h \leq 10$, $-20 \leq k \leq 20$, $0 \leq l \leq 21$); 10802 unabhängige Reflexe mit 7217 signifikanten Strukturfaktoren ($|F_o| > 6\sigma |F_o|$); Absorptionskorrektur (DIF-ABS). Lösung durch Pattersonsynthese; Verfeinerung nach Blockmatrix-LSQ-Verfahren; anisotrope Auslenkungsparameter für alle W-, P-, O-, N- und C-Atome; [BF₄]⁻-Anionen als starre Gruppen mit paarweise fehlgeordneten F-Atomen (Besetzungsfaktoren 0.6 und 0.4) isotrop; H-Atome in geometrisch idealisierten Positionen mit gleichfalls isotropem Verhalten (Siemens SHELXTL PLUS); Gütefaktoren: R = 0.099 und $wR_F = 0.103$ für alle 10802 Daten, R = 0.069 und $wR_F = 0.086$ für 7217 $|F_o| > 6\sigma |F_o|$; minimierte Funktion: $\Sigma w(|F_o| - |F_c|)^2$ mit w = 1. Ergebnisse in Tab. 8.

Dank

Die Arbeit wurde vom Fonds der Chemischen Industrie und vom Schweizer Nationalfonds in großzügiger Weise unterstützt. J. Pietsch dankt dem Freistaat Bayern für Förderung durch ein Promotionsstipendium. Der weitere Dank von L. Dahlenburg geht noch an Herrn Professor Dr. K. Brodersen für die Bereitstellung von Sach- und Personalmitteln sowie an Herrn Professor Dr. D. Sellmann für die Ermöglichung eines Teils der Kernresonanzuntersuchungen.

Literatur und Bemerkungen

- 1 D.H. Gibson und Y.S. El-Omrani, Organometallics, 4 (1985) 1473.
- 2 (a) P.L. Gaus, S.C. Kao, K. Youngdahl und M.Y. Dahrensbourg, J. Am. Chem. Soc., 107 (1985) 2428; (b) P.A. Tooley, C. Ovalles, S.C. Kao, D.J. Dahrensbourg und M.Y. Dahrensbourg, J. Am. Chem. Soc., 108 (1986) 5465.
- 3 J.-F. Reynoud, J.-F. Leboeuf, J.-C. Leblanc und C. Moïse, Organometallics, 5 (1986) 1863.
- 4 S.M. Geraty, P. Harkin und J.G. Vos, *Inorg. Chim. Acta, 131* (1987) 217.
- 5 T. Ito, M. Koga, S. Kurishima, M. Natori, N. Sekizuka und K. Yashioka, J. Chem. Soc., Chem. Commun., (1990) 988.
- 6 J.-S. Song, D.J. Szalda, R.M. Bullock, C.J.C. Lawrie, M.A. Rodkin und J.R. Norton, Angew. Chem., 104 (1992) 1280; Angew. Chem., Int. Ed. Engl., 31 (1992) 1233.
- 7 P. Kundel und H. Berke, J. Organomet. Chem., 335 (1987) 353.
- 8 (a) A.A.H. van der Zeijden, H.W. Bosch und H. Berke,

Organometallics, 11 (1992) 2051; (b) A.A.H. van der Zeijden und H. Berke, Helv. Chim. Acta, 75 (1992) 513; (c) A.A.H. van der Zeijden, D. Veghini und H. Berke, Inorg. Chem., 31 (1992) 5106.

- 9 C. Bianchini, C. Mealli, A. Meli, M. Peruzzini und F. Zanobini, J. Am. Chem. Soc., 110 (1988) 8725.
- 10 W.D. Harman und H. Taube, J. Am. Chem. Soc., 117 (1990) 2261.
- 11 E.W. Abel, I.S. Butler und J.G. Reid, J. Chem. Soc., (1963) 2068.
- 12 (a) W.A. Schenk, J. Organomet. Chem., 117 (1976) C97; (b) W.A. Schenk, J. Organomet. Chem., 139 (1977) C63; (c) W.A. Schenk, J. Organomet. Chem., 179 (1979) 253.
- 13 H. Berke und C. Sontag, Z. Naturforsch., 40b (1985) 794.
- 14 H. Berke und P. Kundel, Z. Naturforsch., 41b (1986) 527.
- 15 G. L. Hillhouse und B.L. Haymore, Inorg. Chem., 26 (1987) 1876.
- 16 (a) W.H. Hersh, J. Am. Chem. Soc., 107 (1985) 4599; (b) R.V.
 Honeychuck und W.H. Hersh, Inorg. Chem., 26 (1987) 1826; (c)
 R.V. Honeychuck und W.H. Hersh, Inorg. Chem., 28 (1989) 2869.
- 17 W.H. Hersh, Inorg. Chem., 29 (1990) 713.
- 18 W.A. Schenk und W. Buchner, Inorg. Chim. Acta, 70 (1983) 189.
- 19 P.E. Garrou, Chem. Rev., 81 (1981) 229.
- 20 (a) A.J. Nielson und J.M. Waters, *Polyhedron*, 1 (1982) 561; (b)
 D.C. Bradley, R.J. Errington, M.B. Hursthouse, A.J. Nielson und
 R.L. Short, *Polyhedron*, 2 (1983) 843.
- 21 M.K. Cooper, J.M. Downes und P.A. Duckworth, *Inorg. Synth.*, 25 (1989) 129.
- 22 J.E. Hoots, T.B. Rauchfuss und D.A. Wroblewski, *Inorg. Synth.*, 21 (1982) 175.
- 23 W. Strohmeier und F.-J. Müller, Chem. Ber., 102 (1969) 3608.
- 24 T.S.A. Hor, Inorg. Chim. Acta, 143 (1988) 3.
- 25 Definitionen der angegebenen Gütefaktoren: $R = \sum ||F_0| |F_c||$ $/\sum |F_0|$; $wR_F = [\sum w(|F_0| - |F_c|)^2 / \sum w|F_0|^2]^{1/2}$; $wR_{F^2} = \sum [w(F_0^2 - F_c^2)^2 / \sum [w(F_0^2)^2]]^{1/2}$. Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-57779, der Autoren und des Zeitschriftenzitats angefordert werden.
- 26 G.M. Sheldrick, SHELXS86 Program for Crystal Structure Solution from Diffraction Data, Universität Göttingen, 1986.
- 27 G.M. Sheldrick, *sheLx76 Program for Crystal Structure Determination*, University of Cambridge, 1976.
- 28 G.M. Sheldrick, SHELX93 Program for the Refinement of Crystal Structures from Diffraction Data, Universität Göttingen, 1993.
- 29 N. Walker und D. Stuart, DIFABS Program for Correcting Diffractometer Data for Absorption Effects, Acta Crystallogr., Sec. A, 39 (1983) 158.